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Abstract
Recently, with the rise of high dynamic range
(HDR) display devices, there is a great demand to
transfer traditional low dynamic range (LDR) im-
ages into HDR versions. The key to success is
how to solve the many-to-many mapping problem.
However, the existing approaches either do not
consider constraining solution space or just sim-
ply imitate the inverse camera imaging pipeline in
stages, without directly formulating the HDR im-
age generation process. In this work, we address
this problem by integrating LDR-to-HDR imag-
ing knowledge into an UNet architecture, dubbed
as Knowledge-inspired UNet (KUNet). The con-
version from LDR-to-HDR image is mathemati-
cally formulated, and can be conceptually divided
into recovering missing details, adjusting imaging
parameters and reducing imaging noise. Accord-
ingly, we develop a basic knowledge-inspired block
(KIB) including three subnetworks corresponding
to the three procedures in this HDR imaging pro-
cess. The KIB blocks are cascaded in the simi-
lar way to the UNet to construct HDR image with
rich global information. In addition, we also pro-
pose a knowledge inspired jump-connect structure
to fit a dynamic range gap between HDR and LDR
images. Experimental results demonstrate that the
proposed KUNet achieves superior performance
compared with the state-of-the-art methods. The
code, dataset and appendix materials are available
at https://github.com/wanghu178/KUNet.git.

1 Introduction
Due to the limitation of existing (imperfect) hardware de-
vices, people can only get photos with a certain range of
brightness, i.e., common LDR images, which leads to the cap-
ture of LDR pictures with overexposed and underexposed ar-
eas as well as indifferent colors [Wang and Yoon, 2021]. The
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Figure 1: Comparison between the method of reversing the cam-
era imaging pipeline and our method. (a) Multiple neural networks
are designed to approximate the stages of reversing camera imag-
ing pipeline where (b) describes a representative camera imaging
process. (c) Our method uses a basic building block of UNet to sim-
ulate the LDR-to-HDR imaging formula.

HDR image itself has a rich dynamic range, so it can express
rich scene brightness and vivid colors. Restoring HDR image
from LDR image has a very important practical significance
[Eilertsen et al., 2017b], and this is an ill-posed problem since
multiple mappings exist between the LDR and HDR images.

There are three ways to construct HDR image [Kim et
al., 2020a]: direct reconstruction, multi-exposure stack-based
synthesis and reconstruction by reversing the camera imag-
ing pipeline. Direct reconstruction simply uses the modules
in other research fields to generate HDR images in an end-to-
end manner [Kim et al., 2020b; Chen et al., 2021a]. A pair
of LDR-HDR image set is needed to train the model. These
models are simple but do not in-depth consider HDR imag-
ing mechanism; the noise reduction and recovery of the lost
details are not enough.

The second line of methods use multi-exposure LDR im-
age stack to reconstruct HDR image [Kim et al., 2020a].
It uses a LDR image to generate multi-exposure LDR im-
ages to synthesize HDR image. In this way, different ex-
posure information are used. The key to success for this
line is how to generate accurate multi-exposure images and
how to combine these multi-exposure images. For the last
kind of methods, they reverse the HDR-to-LDR image for-
mation pipeline, and then the HDR image generation task
is decomposed into multiple subtasks [Liu et al., 2020;
Chen et al., 2021b]. Multiple neural networks are used to ap-
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proximate these subtasks to generate HDR images. However,
the dependence between subtasks need to be carefully con-
sidered and how to train these cascaded networks becomes a
new problem.

In this work, we propose a new approach which integrates
the HDR imaging knowledge to an UNet architecture, named
as Knowledge-inspired UNet(KUNet). Our approach not only
absorbs the advantages of the simple structure of UNet, but
also considers the imaging principle, which greatly reduces
the solution space. The LDR-to-HDR mathematical formula
is modeled by Knowledge-Inspired Block (KIBs) composed
of three parts in charge of recovering missing details in over-
exposed area, adjusting imaging parameters and reducing
LDR imaging noise, respectively. Then, similarly as UNet,
in order to gather the features needed in HDR reconstruction,
the features from multiple KIBs are converged to reconstruct
HDR image. Furthermore, the direct jump connection in the
traditional UNet is adjusted to fit the dynamic range gap with
a Knowledge-Inspired jump Connection (KIC), which trans-
fers the LDR features to the HDR features. And the directly
connection transported features are scored to assist final HDR
reconstruction.

Our contributions are three-fold: (1) We proposed a new
knowledge-inspired UNet for HDR reconstruction approach.
By analyzing the camera imaging pipeline, the HDR image
restoration formula is derived. Based on this knowledge, the
KIB is constructed to obtain the HDR image needed features.
(2) A new jump connection structure is further designed to ad-
dress the dynamic range gap between LDR and HDR. More
useful features can be combined in the final reconstruction
layer. To the best of our knowledge, we are the first to propose
a specific jump-connect structure for HDR image reconstruc-
tion. (3) Despite its simple design, extensive experiments
on HDR image and video reconstruction datasets prove that
our KUNet outperforms a wide variety of the state-of-the-art
methods.

2 Related Work
Multi-exposure stack HDR synthesis. The most common
way of HDR reconstruction is to capture a series of LDR
images with different exposures and then fuse these images.
Wang et al., [Wang and Yoon, 2021] divided these meth-
ods into five types, namely, flow-based alignment, direc-
tion feature concatenation, correlation-guided alignment, im-
age translation-based alignment, and deep static image fu-
sion. Although the technical route based on multi-exposure
LDR image synthesis is significant, it is difficult to find sim-
ilar multi-exposure images for most LDR images in the real
world.

Single-exposure HDR image reconstruction. Previous
works built models to fit the nonlinear HDR imaging process.
Although high efficiency can be achieved, the performance
is not satisfied because of the approximation ability of tradi-
tional models. With the development of deep learning in last
decades, there emerged many methods to learn LDR-to-HDR
mapping. They can be roughly divided into three categories
as mentioned before.

For the first approach of direct reconstruction method,

HDRCNN [Eilertsen et al., 2017a] was first proposed to re-
store the overexposed areas in LDR image to construct HDR
image which only considers the recovery of overexposed ar-
eas. After that, a lot of works proposed different neural net-
works to fit the LDR-to-HDR mapping [Kim et al., 2020b;
Chen et al., 2021a]. Although these methods have achieved
good results, these methods either directly use modules in
other research fields, or use some of HDR imaging knowl-
edge as conditions. There still exists a lot of room for im-
provement. For the line of multi-exposure stack-based syn-
thesis, they pass an image through CNN to generate LDR im-
ages with different exposures, and then merge these images
together to generate HDR images [Kim et al., 2020a]. The
key to success of this approach is the quality of the gener-
ated multi-exposure images which is affected by many fac-
tors and how to train these models is also not easy. The last
approach [Liu et al., 2020] reverses camera imaging pipeline,
multiple networks are employed to learn the stages of inverse
camera imaging pipeline to generate HDR images. After that,
the method HDRTV [Chen et al., 2021b] extends it for HDR
TV task. This kind of methods have shown very good results.
However, this type of method uses multiple network splicing
which has a strong dependence between these networks. Ex-
cept a large number of parameters, this architecture will bring
troubles to model generalization and training.

Instead of this approach, we absorb the advantages of UNet
which can easily integrate different scale features and use a
basic building block to approximate the LDR-to-HDR for-
mula. This knowledge-inspired UNet will merge different
scale features which are needed for HDR image reconstruc-
tion. So the performance is further improved.
Jump-connect structure. Since the use of the jump-
connect structure in the UNet network [Ronneberger et al.,
2015], the jump-connect structure has received widespread
attention. MultiResUNet [Ibtehaz and Rahman, 2020] uses
several convolutional blocks to construct Res path to improve
the jump-connect structure. NBNet [Cheng et al., 2021] also
uses some convolutional blocks, but after convolution, the at-
tention mechanism combined with the information on the de-
coding side is used. [Wang et al., 2021] summarizes the in-
formation that needs to be jumped on the decoding end, and
Transformer is employed.

These structures are designed for their respective tasks,
which cannot be directly used for HDR generation since
LDR-to-HDR image reconstruction has the problems of dy-
namic range gap and overexposed areas. So we propose a
new jump-connect structure which does mapping from LDR
feature to HDR needed features, reduces the noise caused by
HDR-to-LDR imaging process and decreases ghosting during
LDR-to-HDR generation.

3 Analysis of HDR Image Reconstruction
LDR image formation formula is proposed in [Hasinoff et
al., 2010] as follows,

IL =

{
t
gϕ+ I0 + n, Unsaturation;

Imax, Saturation
(1)

where t is the exposure time, g is the sensor gain, and I0 is the
constant offset current. ϕ represents the scene brightness, as



Figure 2: The overall structure of the proposed framework. (a) An Unet architecture is with a knowledge-inspired direct jump connection
(KIC) where Head and Tail are feature extraction and reconstruction blocks respectively. (b) A knowledge-Inspired Block (KIB) is composed
of three parts: imaging parameter adjusting (X), imaging noise reduction (Y) and missing overexposed features recovering (R). (c) KIC also
consists of three main parts: high frequency feature enhancement (D), LDR-to-HDR feature mapping (M) and feature filtering (F). DC and
AD mean dense connection and adaptive fine-tuning operation respectively.

mentioned in [Pérez-Pellitero et al., 2021], which can be as-
sumed as HDR pixel value. IL represents a LDR image pixel
value and n is the sensor noise. Unsaturation represents the
pixels that can be represented by the LDR image after cam-
era imaging pipeline processing; while saturation represents
sensor saturation occurs which is due to the limited capabili-
ties of the current camera, so this pixel value will equal to a
saturation point value Imax [Pérez-Pellitero et al., 2021].

This formula is widely used in LDR image formation
which inspires us to generate the HDR images in a similar
theoretically guided way. Suppose we have a camera with un-
limited capture capabilities, the corresponding saturated pixel
value in Eq. (1) of the LDR images can be represented as fol-
lows,

Imax = Ioverexposed − Ioverflow (2)
where Ioverexposed and Ioverflow represent the pixel values
captured by this infinitely capable camera, and the overflow
values between the ideal and real cameras, respectively. Of
course, if the pixel value is unsaturated, Ioverflow = 0 since
no difference exists between the ideal and real cameras. By
combining Eq.(2) and Eq.(1), the LDR formation process as
can be unified as

IL =
t

g
ϕ+ I0 + n− Ioverflow. (3)

By reversing Eq.(3), the true HDR pixel value can be ob-
tained as follows,

ϕ =
g

t
(IL − I0 + Ioverflow)−

g

t
n. (4)

Since the noise n also includes the impacts from g and t, with-
out generality, we still can consider g

tn as the LDR image
generation noise. From Eq.(4), we can conclude the restora-
tion process from LDR-to-HDR by three parts: 1) inferring
the pixel values in the overexposed area if Ioverflow ̸= 0;
2) adjusting sensor gain and exposure time; 3) reducing the
noise caused by LDR image generation.

The above Eq.(4) formulates the restoration of HDR im-
ages from the perspective of image pixel intensities. How-
ever, in the image domain, the direct estimation of Ioverflow,
g and t is very difficult. Considering the power of deep learn-
ing in feature representation and learning, in this paper, we
formulate and estimate formula (4) of the HDR image restora-
tion process in the feature domain using neural networks.
Each function is formulated by a sub-network and together
restores the HDR features, then generates HDR images. The
detail of this knowledge-inspired model will be introduced in
Section 4.

4 The Proposed Method

The framework of the proposed method is shown in Fig.2(a),
which is based on an UNet-like architecture. To obtain more
HDR needed features, the receptive field of a larger area
by down sampling makes the convolution operation capture
more information. So we choose the Unet-like architecture
as the backbone of our base network.

The Knowledge-inspired UNet (KUNet) consists of five
stages. Head stage extracts features from the input LDR im-
age IL; while Tail stage reconstructs a HDR image based on
the merged features. Between the Head and Tail stages, there
is a jump-connection (KIC). After transforming the LDR im-
age into the feature space, four KIBs are used to transfer the
LDR features to HDR features according to formula (4). To
fully explore the global information with a large receptive
field, two KIBs are used in a smaller scale in a UNet struc-
ture. Finally, the features from the fourth KIB are integrated
with the features from LDR image, transferred through KIC
to formulate the HDR features, and a final Tail module is used
to generate the HDR image from the features, to reconstruct
HDR image ÎH . In the following, we will introduce the main
parts separately.



4.1 Head and Tail
The main function of Head stage is to transfer the LDR image
to a rich feature space for the following LDR-to-HDR feature
conversion. It does not require overly complex operations. A
simple subnetwork of three layer convolutions and ReLU ac-
tivation functions are employed to complete this task, which
is denoted by

Fout = (ReLU ◦ Conv3×3)
3(IL) (5)

where (·)n represents the serial cascade of n modules. Fout

represents the output of Head. Correspondingly, the Tail stage
reconstructs the image from the features. So a symmetrical
structure is adopted at the Tail stage as follows,

ÎH = (ReLU ◦ Conv3×3)
3(F p

out) (6)

where ÎH is the reconstructed HDR image as mentioned be-
fore; F p

out = f(Fout) represents the output features of the
intermediate process of KUNet.

4.2 Knowledge-Inspired Block
As stated in Section 3, formula (4) can be used to reconstruct
the HDR image from the image intensity perspective. How-
ever, it is hard to direct formulate the functions in the im-
age intensity domain. Therefore, we turn to the feature space
and take advantage of the representation ability of deep learn-
ing. Consequently, the formula can be characterized in fea-
ture space as below,

ϕ︸︷︷︸ =
g

t︸︷︷︸ (IL − I0 + Ioverflow)︸ ︷︷ ︸−g

t
n︸ ︷︷ ︸,

HF = X(LF ) ⊙ R(LF ) + Y (LF ) (7)
where ⊙ denotes the element-wise multiplication. LF and
HF represent the input LDR feature from previous module
and the feature to reconstruct the output HDR image, respec-
tively. R(·) corresponds to the part of formula (4) for com-
pensating the missing overexposed features to reconstruct
HDR; X(·) is in charge of modulating the compensated fea-
tures R(LF ) to HDR feature domain; Y (·) corresponds to
the LDR imaging noise reduction part of formula (4). With
the help of this form of expression in feature space, our
knowledge-inspired block is developed as shown in Fig.2(b),
consisting of three parts of networks which fit the functions
R(·), X(·) and Y (·), respectively.

For the network fitting the R(·) function, as shown in
Fig.2(b), k Densely Connected (DC) blocks are cascaded and
concatenated to obtain the compensated features. It is de-
noted by:

R = Cat(DC(LF ), · · · , DCk(LF )), (8)
where Cat(·) means the concatenation operation. The DC
block consists of two layers of convolution and ReLU acti-
vation function (ReLu ◦ Conv3×3), which are also densely
connected to guarantee the information from upper layer will
not be lost. In this way, the information from LF is retained
as much as possible. For recovering the overexposed area, a
mask loss is proposed for the R neural network of the ith KIB
block as the following,

Li
mask =∥IH ⊙M −Ki ⊙M∥1

+ γ∥IH −Ki∥1
(9)

where IH represents the real HDR image. γ controls the re-
covery of overexposed area under a stage-wise consistency
regularization between a reconstructed image and the true
HDR image. Often, reconstructed images are not highly ac-
curate and we set small γ to avoid over-penalty. So the pa-
rameter γ = 0.1 is fixed in our implementation. Ki is a recon-
structed image through a reconstruction branch. When i = 1
or 4, it is composed of an upsampling and a convolution lay-
ers (Up ◦ Conv3×3); while for other cases, it is composed of
two upsampling and a convolution layers (Up2 ◦ Conv3×3).
M represents an overexposed area mask. As mentioned in
[Yu et al., 2021], the overexposure mask is calculated as the
following,

M =

{
1, if 1

3

∑
c I(x, y, c) < τ,

0, otherwise
(10)

where c is the color channel index and τ is 0.83 [Yu et al.,
2021]. Through this loss function, our R networks pays more
attention to recover the information of overexposed area,
which much better fits formula (4). It should be noted that
the mask branch is only used in training phase, which does
not bring any additional overhead at inference phase.

For the X and Y networks, it is denoted in [Liu et al., 2020]
that the LF feature contains information to approximate the
camera imaging parameter and noise. Inspired by [He et al.,
2020], we use two 1× 1 convolution layers to simulate these
functions. The process can be described as follows:

X = Conv1×1 ◦ Conv1×1(LF ), (11)
Y = Conv1×1 ◦ Conv1×1(LF ). (12)

Remark. Compared with the previous methods, our KIB
fits the HDR imaging formula. The solution space is con-
strained and the many-to-many LDR-to-HDR mapping prob-
lem is reduced. In addition, under the adjustments of X and
Y modules, the function of generating HDR features is adap-
tive to the different LDR images.

4.3 Knowledge-Inspired Jump Connection
The information at the front end of the network are also use-
ful for HDR image reconstruction. As UNet does, we also
use direct jump connection to transport this information. As-
sume the front end feature is F and the feature at the transport
destination is P , tradition direct jump connection formula is

F̂ = F + P, (13)

where F̂ represents the fused feature. This type of connec-
tion does not fit our LDR-to-HDR problem. There exist two
defects. (1) As denoted in Eq.(1), for LDR image forma-
tion pipeline, a lot of noise will be produced which should be
eliminated when transported to the destination. (2) The dy-
namic range gap exists between the LDR and HDR images
which will cause the feature space not consistent between the
front and back ends. Based on this knowledge, we design a
new KIC jump-connect structure which pays attention to the
noise reduction and feature mapping.

For reducing LDR imaging noise, we use a residual struc-
ture as shown in Fig.2(c). The correct pixels in the unsatu-
rated regions are directly connected to the output; while the



Method Venue PSNR ↑ PSNR-µ ↑
LandisEO[Landis, 2002] SIGGRAPH02 17.88 23.30

HuoPhyEO [Huo et al., 2014] TVC14 32.40 17.35
SingleHDR[Liu et al., 2020] CVPR20 32.32 19.54

HDRCNN [Eilertsen et al., 2017a] ACM TOG17 39.47 26.05
Deep SR-ITM [Kim et al., 2019] ICCV19 43.29 26.25

ResNet [He et al., 2016] ECCV16 41.92 33.24
HDRUNet [Chen et al., 2021a] CVPRW21 44.10 33.59

KUNet Ours 44.83 33.67

Table 1: Quantitative comparisons on the NTIRE2021 dataset. Red
text indicates the best.

high frequency or the information in the over-exposure area
are processed by two convolutional layers. Here, since most
of the HDR processing has already been conducted in the KIB
branch, for simplicity, all the features are bypassed through
the direction connection and the convolution processing for
the over-exposure area learns the difference between the orig-
inal features and the over-exposed features. It is the D net-
work in Fig.2(c) which is denoted by

D = Conv3×3 ◦ReLU ◦Conv3×3 ◦ReLU(F ) + F. (14)

For the feature mapping from LDR-close feature space to
HDR-close feature space which is shown as the M part in
Fig.2(c), two simple two convolutional layers are employed
as

F̃ = Conv3×3 ◦ReLU ◦ Conv3×3 ◦ReLU(D). (15)

It has also been noted that a small number of convolution
blocks are effective for HDR image reconstruction [Chen et
al., 2021b].

Furthermore, in order to suppress useless information and
reduce the visual ghosting, we further filter the features pro-
cessed by the above networks. Scoring mechanism is em-
ployed. The final filtered feature is

F̂ = AD(Sim(F̃ , P )⊙ F̃ ) + P (16)

where AD represents a 1×1 convolution which is used to ad-
just the scored feature. We adopt Cosine similarity in [Zhang
et al., 2020] as follows,

Sim(F̃ , P ) =
F̃ · P

max(||F̃ ||2 · ||P ||2, ε)

where ε represent a very small parameter which is used to
prevent division by zero.

Remark. Ideally, the jump-connect structure should solve
the problems of noise reduction, feature mapping, and over-
exposure pixel value discovering. The over-exposure area re-
covery is not implemented in here due to two reasons: (1)
The cascaded KIBs already try to find features to recover the
over-exposure area; (2) A simple jump-connect structure can-
not handle this situation very well.

4.4 Loss Function
Our total loss function is divided into a main loss function
and a mask loss function, which is denoted by

Loss(IH , ÎH) = Lmain(IH , ÎH) + βLmask(IH , ÎH) (17)

where Lmain = ∥IH − ÎH∥1 and Lmask =
∑4

i=1 L
i
mask. Sim-

ilar as KIB’s R network, the mask loss with the weight con-
trolled by β is also designed to recover the overexposed area,
playing an auxiliary role. Given that, β is also set small.
So the parameter β = 0.01 is fixed in our implementation.
Compared with the approaches based on reversing the cam-
era imaging pipeline, our loss function is rather simple and
no hyper-parameter exists. The training of our method is also
simple and end-to-end.

5 Experiments
5.1 Experiment Setup
Datasets. We use two data sets to evaluate our method, i.e.,
for image and video tasks. Both of these two data sets contain
information about moving light sources, rich colors, high-
lights and bright. For the image task, following the works
in [Chen et al., 2021a; Liu et al., 2021], the NITRE 2021
dataset is used which was proposed in NITRE 2021 HDR
Challenge [Pérez-Pellitero et al., 2021] selected from HDM
HDR dataset [Froehlich et al., 2014]. This data set only con-
tains HDR images. Since the ground truth of test and valida-
tion images are not available, by similar operation in [Chen
et al., 2021a], the original training set is decomposed into
two parts for training and test. They are 1416 paired training
images and 78 test images. For the video task, we conduct
experiment on HDRTV [Chen et al., 2021b]. This dataset
is obtained from 22 HDR10 standard videos and these videos
comply with the Rec.2020 standard. It contains 1235 paired
training pictures and 117 test pictures. It is mentioned in
[Chen et al., 2021b] that the LDR-to-HDR image task is dif-
ferent from the SDRTV-to-HDRTV task. However, for our
method, the restoration task is limited to a certain brightness
interval, which is consistent with the restoration goal of the
SDRTV-to-HDRTV task. So the HDRTV is also selected as
our comparison data set.

Evaluation metrics. Since the video and image tasks have
different recovery goals, they have different measurement
methods. For the image data set, we follow the evaluation
methods in [Chen et al., 2021a; Liu et al., 2021; Pérez-
Pellitero et al., 2021] to use PSNR and PSNR-µ [Demetris
et al., 2018]. For the video data set, we follow the compar-
ison method in [Chen et al., 2021b], using PSNR, SSIM,
SR-SSIM [Zhang and Li, 2012], HDRVDP3 [Mantiuk et al.,
2011] and δEITP .

In order to be consistent with other video measurement
methods, we use the same HDRVDP3 parameters in [Chen
et al., 2021b].

Implementation details. All models are built on the Py-
Torch framework. Due to space limitations, more details can
be obtained from the Appendix.

5.2 Comparison with State-of-the-art
Compared methods. For the HDR image data set, we com-
pare our method KUnet with 7 State-Of-The-Art (SOTA)
methods. They are LandisEO [Landis, 2002], HuoEo [Huo
et al., 2014], HDRCNN [Eilertsen et al., 2017a], Single-
HDR [Liu et al., 2020], DEEP SR-ITM [Kim et al., 2019]



Method Venue Params PSNR ↑ SSIM ↑ SR-SIM ↑ ∆ITP ↓ HDR-VDP3 ↑
LDR-HDR HuoPhyEO[Huo et al., 2014] TVC14 - 25.90 0.9296 0.9881 38.06 7.893

KovaleskiEO[Kovaleski and Oliveira, 2014] SIBGRAPI14 - 27.89 0.9273 0.9809 28.00 7.431

Image-to-image
translation

ResNet[He et al., 2016] ECCV16 1.37M 37.32 0.9720 0.9950 9.02 8.391
Pixel2Pixel [Isola et al., 2017] CVPR17 11.38M 25.80 0.8777 0.9871 44.25 7.136
CycleGAN [Zhu et al., 2017] ICCV17 11.38M 21.33 0.8496 0.9595 77.74 6.941

Photo retouching
HDRNet [Gharbi et al., 2017] ACM TOG17 482K 35.73 0.9664 0.9957 11.52 8.462

CSRNet [He et al., 2020] ECCV20 36K 35.04 0.9625 0.9955 14.28 8.400
Ada-3DLUT [Zeng et al., 2020] TPAMI20 594K 36.22 0.9658 0.9967 10.89 8.423

SDRTV-to-HDRTV

Deep SR-ITM [Kim et al., 2019] ICCV19 2.89M 37.10 0.9686 0.9950 9.24 8.233
JSI-GAN [Kim et al., 2020b] AAAI20 1.06M 37.01 0.9694 0.9928 9.36 8.169

AGCM+LE [Chen et al., 2021b] ICCV21 1.41M 37.61 0.9726 0.9967 8.89 8.613
AGCM+LE+HG [Chen et al., 2021b] ICCV21 37.20M 37.21 0.9699 0.9968 9.11 8.569

Ours KUNet Ours 1.12M 37.78 0.9868 0.9971 7.80 8.393

Table 2: Quantitative comparisons on the HDRTV dataset. Red text indicates the best.

and ResNet [He et al., 2016], and HDRUnet [Chen et al.,
2021a].

For the HDR video data set. we combine our methods
with four types of methods including SDRTV-to-HDRTV,
image-to-image translation, photo retouching and LDR-to-
HDR [Chen et al., 2021b].

Quantitative comparison. It can be seen from Table 1 and
Table 2 that our model shows excellent performance in the
data sets for both of image and video tasks. For the NTIRE
dataset, SingleHDR and traditional algorithms [Huo et al.,
2014; Landis, 2002] are not very suitable for this problem.
This is because their goals are to restore the relative bright-
ness instead of restoring the absolute brightness. So the per-
formance is not satisfied. While DEEP SR-ITM and HDR-
CNN do not consider the denoising issue, the performance
is slightly worse. Although HDRUNET does considering the
problem of reducing noise, it does not consider the difference
between the traditional image and HDR generation problems.
In general, our performance is SOTA.

For HDRTV dataset, the ∆ITP of KUnet far exceeds other
SOTA algorithms. It shows that our model is satisfactory on
color gamut recovery in this video data set. The reason is that
the original intention of our model considers that the gen-
erated images contain different color gamuts, but the color
gamut in the HDRTV set is consistent, i.e., it has a smaller
solution space compared to different color gamuts, so we can
achieve excellent performance. From Table 2, it is worth
noting that KUNet achieves SOTA performance except the
HDRVDP3 index. The reason is that KUNet is trying to re-
construct a HDR image that is close to the original HDR im-
age in terms of color, bit depth, etc., however, HDRVDP3 is
used to evaluate human visual perception in a specific range.
Therefore, KUNet does not achieve the SOTA performance
on this index, while it is still competitive compared with other
methods. As shown in Appendix, with an additional percep-
tion loss, the HDRVDP3 index will be improved.

Due to space limitations, the visual analysis are shown in
Appendix. There are three basic observations. (1) Compared
with the existing methods, KUNet model can show satisfac-
tory visual effects for both image and video datasets. (2)
KUNet can effectively remove imaging noise. (3) The KIC
module can accelerate model training compared with only di-
rect jump connection.

R X Y Skip DM F Lmask PSNR↑ PSNR-µ ↑
! - - ! - - - 44.17 33.35
! ! ! - - - 44.37 33.63
! - ! ! - - - 44.16 33.48
! ! ! ! - - 44.50 33.66
! ! ! - ! - - 44.79 33.60
! ! ! - ! ! - 44.80 33.67
! ! ! - ! ! ! 44.83 33.67

Table 3: Ablation analysis.

5.3 Ablation Studies

In this part, we will do ablation analysis on KIB and KIC
modules. The experiments are performed on the NTIRE2021
dataset. As mentioned before, KIB has three parts. One part
is the core module D, which is also our base block, and other
parts are the adaptive X and Y branches for fine-tuning the
generated HDR features from R module. From the first row in
Table 3, it can be seen that only using the D module can also
achieve an acceptable result where ’Skip’ means using di-
rectly jump connection. Then, with the X and Y branches, the
module has stronger expressive ability and the performance is
increased. As shown in formula (4) that the X and Y branches
must be used at the same time. Through experiments, we have
also proved that our analysis is correct. KIC consists of two
parts: the noise reduction (D) and feature mapping and filter
(F). From the fifth and sixth rows in Table 3, we can find that
these two parts work very well. The last row shows that the
model with the loss Lmask can achieve the best results.

6 Conclusion

In this paper, we analyzed the HDR-to-LDR imaging process
and obtained the HDR image formulation formula, which in-
spired us to propose a new model KUnet. The KIB block
is combined with the UNet network to reconstruct the HDR
image. In addition, we made a preliminary improvement
on the incompatibility of the UNet jump-connect structure
to the problem of HDR image restoration, and proposed the
KIC branch. It is used to assist HDR image restoration, and
achieved very good results. Experiments demonstrated that
our method KUnet has achieved the SOTA results on HDR
image and video datasets.
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