

Introduction

Background: Temporal action detection (TAD) aims to identify the temporal interval (i.e., the start and end points) and the class label of all action instances in an untrimmed video. **Motivation:** All existing TAD methods rely on proposal generation by either regressing predefined anchor boxes (Fig. 1(a)) or directly predicting the start and end times of proposals (Fig. 1(b)). It takes a local view of the video and focus on each individual proposal for refinement and classification. It has some limitations: (1) An excessive (sometimes exhaustive) number of proposals are usually required for good performance. - *cost ineffective* (2) Once the proposals are generated, the subsequent modeling is local to each individual proposal - missing global context. **Contributions:** (1) Proposed a novel *proposal-free TAD model* based on global segmentation mask (TAGS) learning with simpler design and low computation cost; (2) To enhance the learning of temporal boundary, we proposed a novel boundary focused loss, along with mask predictive redundancy; (3) SOTA performance on ActivityNet and THUMOS.

Model Architecture

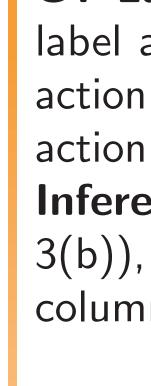
Learning Objectives

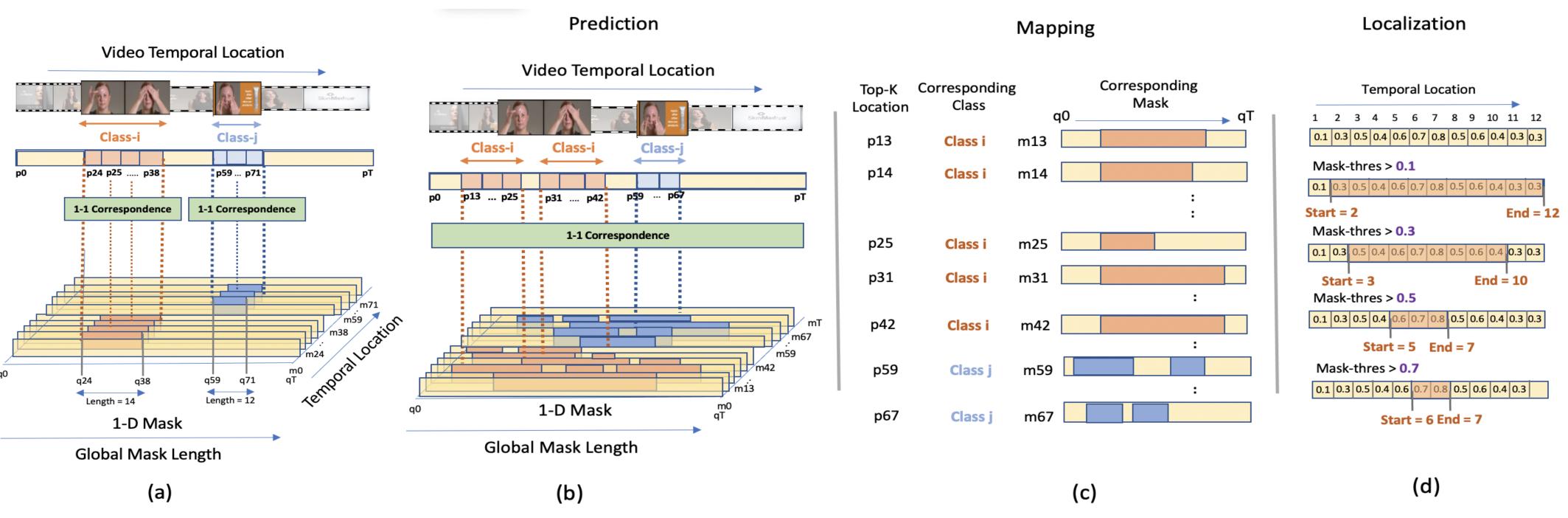
Softmax Cross Entropy (CE)

classifying the temporally dependent snippet specific

action classes

 $\mathcal{L}_{\rm SC} = \lambda_1 (1 - p(y))^{\gamma} \log(p_y)$


Classification Regression (CR)


classifying the snippets independently using sigmoid which also models the masks in class branch

$$\mathcal{L}_{CR} = (1 - \lambda_1) \left(\log(r_y) - \frac{\alpha}{|\mathcal{N}|} \sum_{k \in \mathcal{N}} (\log(1 - r(k))) \right)$$

Proposal-Free Temporal Action Detection via Global Segmentation Mask Learning

Sauradip Nag, Xiatian Zhu, Yi-Zhe Song, Tao Xiang s.nag@surrey.ac.uk https://github.com/TAGS

Boundary IOU (bIOU)

calculates IOU of action mask boundaries and also penalizes for no overlap of boundaries

$$\mathcal{L}_{\text{bIOU}} = 1 - \left(\frac{\bigcap(m,g)}{\bigcup(m,g)} + \frac{1}{\bigcap(m,g) + \epsilon} \frac{\|m-g\|_2}{c}\right)$$

Mask Redundancy (MR)

estimates the inter-branch prediction redundancy and mask branch per-instance mask consistency

 $\mathcal{L}_{\mathrm{MR}} = \left(1 - \mathbb{R}(\pi[j^*])\right)^{\beta} \|m_t - g_t\|_2 + \mathcal{L}_{\mathrm{cos}},$

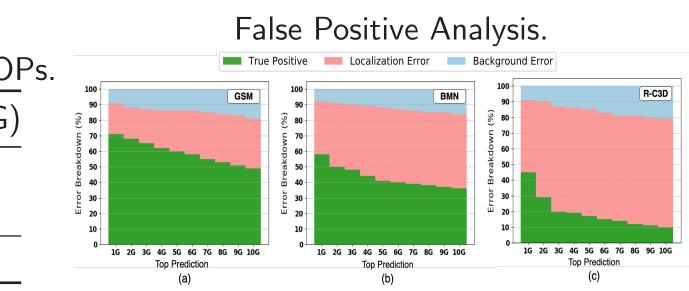
Label Assignment and Inference

GT Label Assignment : To train TAGS, the ground-truth needs to be arranged into the designed format. (1) We label all the snippets (orange or blue squares) of a single action instance with the same action class. (2) For an action snippet, its global mask is defined as the video-length binary mask of that action instance. (3) Each mask is action instance specific and all snippets of a action instance share the same mask. Given a test video, we start with the top $\% M_1$ scoring snippets from class branch (Fig Inference: 3(b)), we obtain their segmentation mask predictions (Fig 3(c)) by thresholding the corresponding columns of mask branch (Fig 3(d)). We then combine the scores and use SoftNMS for post-processing. Label Assignment Inference Strategy

Main Results

Results on ActivityNetv1.3 and THUMOS14												
Туре	Model	Bkb	THUMOS14					ActivityNet-v1.3				
турс			0.3	0.4	0.5	0.6	0.7	Avg.	0.5	0.75	0.95	Avg.
Anchor	R-C3D	C3D	44.8	35.6	28.9	_	_	_	26.8	_	_	_
	GTAN	P3D	57.8	47.2	38.8	_	_	_	52.6	34.1	8.9	34.3
	MUSES	I3D	68.9	64.0	56.9	46.3	31.0	53.4	50.0	34.9	6.5	34.0
Anchor-free	BMN	TS	56.0	47.4	38.8	29.7	20.5	38.5	50.1	34.8	8.3	33.9
	G-TAD	TS	54.5	47.6	40.2	30.8	23.4	39.3	50.4	34.6	9.0	34.1
	BU-TAL	I3D	53.9	50.7	45.4	38.0	28.5	43.3	43.5	33.9	9.2	30.1
	TCANet	TS	60.6	53.2	44.6	36.8	26.7	-	52.2	36.7	6.8	35.5
	ContextLoc	I3D	68.3	63.8	54.3	41.8	26.2	-	56.0	35.2	3.5	34.2
	RTD-Net	I3D	68.3	62.3	51.9	38.8	23.7	_	47.2	30.7	8.6	30.8
Proposal-Free	TAGS (Ours)	I3D	68.6	63.8	57.0	46.3	31.8	52.8	56.3	36.8	9.6	36.5
	TAGS (Ours)	TS	61.4	52.9	46.5	38.1	27.0	44.0	53.7	36.1	9.5	35.9

Ablation Studies


	Analysis	of	model	training	and	test	cost.
--	----------	----	-------	----------	-----	------	-------

Model	Epoch	Train	Test		
BMN G-TAD	13 11	6.45 hr 4.91 hr	0.21 sec 0.19 sec		
TAGS	9	0.26 hr	0.12 sec		

Analysis d	of model paramete	ers # and FLC
Model	Params (in M)	FLOPs (in G
BMN	5.0	91.2
GTAD	9.5	97.2
TAGS	6.2	17.8

TEL AVIV 2022

