EdgeViTs: Competing Light-weight CNNs on Mobile Samsung Al Center -Cambridge **Devices with Vision Transformers**

香港中文大學 The Chinese University of Hong Kong

1. Contributions

- (1) We investigate the **design of light-weight ViTs** from the practical on-device deployment and execution perspective.
- (1) Local information aggregation from neighbor tokens with depth-wise (2) We present **EdgeViTs**, based on an optimal decomposition of self-attention using standard convolutions; (2) Forming a sparse set of evenly distributed delegate tokens for primitive operations. long-range information exchange by self-attention;
- (3) We consider **latency** and **energy consumption** of different models rather than the number of FLOPs or parameters.

Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios Tzimiropoulos and Brais Martinez

2. EdgeViTs

EdgeViTs are based on a factorization of the standard self-attention by introducing a light-weight and easy-to-implement local-global-local (LGL) bottleneck with three operations:

- (3) Diffusing updated information from delegates to the non-delegate tokens in local neighborhoods via transposed convolutions.

3. Results

On-device evaluation on ImageNet-1K

Model	Top-1 (%)	CPU (ms)	Energy (mJ)	Power(W)	Efficiency (%/msW)
MobileNet-v2 MobileNet-v3 0.75 EfficientNet-B0	72.0 73.3 77.1	33.3 2 3.0 52.1	85.7±7.4 63.0±9.6 159.0±26.2	$\begin{array}{c} 3.31 \scriptstyle \pm 0.26 \\ \textbf{3.46} \scriptstyle \pm \textbf{0.4} \\ \textbf{3.62} \scriptstyle \pm \textbf{0.45} \end{array}$	0.841 1.164 0.485
PVT-v2-B0 PVT-v2-B1	70.5 78.7	26.0 75.4	91.7±19.7 309.0±65.8	$\begin{array}{c} 3.94 \scriptstyle \pm 0.68 \\ 4.63 \scriptstyle \pm 0.71 \end{array}$	0.769 0.255
Twins-SVT-Tiny* DeiT-Tiny Uniformer-Tiny* T2T-ViT-12 TNT-Tiny LeViT-384†	71.2 72.2 74.1 76.5 73.9 79.5	36.9 46.2 40.5 69.9 86.4 71.3	$\begin{array}{c c} 114.5 \pm 17.3 \\ 187.2 \pm 7.6 \\ 134.7 \pm 27.3 \\ 266.2 \pm 42.6 \\ 308.7 \pm 70.5 \\ \textbf{455.2} \pm 125.8 \end{array}$	$\begin{array}{c} 3.71 \scriptstyle \pm 0.24 \\ 4.77 \scriptstyle \pm 0.21 \\ 4.1 \scriptstyle \pm 0.71 \\ 4.37 \scriptstyle \pm 0.36 \\ 3.94 \scriptstyle \pm 0.63 \\ \textbf{6.18} \scriptstyle \pm \textbf{0.74} \end{array}$	0.622 0.386 0.55 0.287 0.239 0.173
MobileViT-XXS MobileViT-XS MobileViT-S	69.0 74.7 78.3	69.5 150.1 221.3	$\begin{array}{c c} 175.3_{\pm 28.7} \\ 251.5_{\pm 81.1} \\ 503.6_{\pm 117.0} \end{array}$	$\begin{array}{c} 2.77 \scriptstyle \pm 0.24 \\ 2.63 \scriptstyle \pm 0.61 \\ 2.76 \scriptstyle \pm 0.21 \end{array}$	0.394 0.297 0.155
EdgeViT-XXS EdgeViT-XS EdgeViT-S	74.4 77.5 81.0	32.8 54.1 85.3	$\begin{array}{c c} 127.4 \pm 27.3 \\ 234.6 \pm 44.0 \\ 386.7 \pm 43.5 \end{array}$	$\begin{array}{c} \textbf{4.27}_{\pm 0.67} \\ \textbf{4.77}_{\pm 0.84} \\ \textbf{4.8}_{\pm 0.26} \end{array}$	0.584 0.33 0.209

We define an energy-aware efficiency metric as the average gain in top-1 accuracy from each 1W run for 1ms (equivalent to consuming 1mJ of energy)

COCO Object Detection

	RetinaNet 1×					Mask R-CNN $1 imes$								
Backbone	#Par.	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	#Par.	AP ^b	AP^{b}_{50}	AP^{b}_{75}	AP^{m}	AP^{m}_{50}	AP^{m}_{75}
PVTv2-B0 EdgeViT-XXS	13.0 13.1	37.2 38.7	57.2 59.0	39.5 41.0	23.1 22.4	40.4 42.0	49.7 51.6	23.5 23.8	38.2 39.9	60.5 62.0	40.7 43.1	36.2 36.9	57.8 59.0	38.6 39.4
EdgeViT-XS	16.3	40.6	61.3	43.3	25.2	43.9	54.6	26.5	41.4	63.7	45.0	38.3	60.9	41.3
ResNet18	21.3	31.8	49.6	33.6	16.3	34.3	43.2	31.2	34.0	54.0	36.7	31.2	51.0	32.7
PVTv1-Tiny PVTv2-B1	23.0 23.8	36.7 41.2	56.9 61.9	38.9 43.9	22.6 25.4	38.8 44.5	50.0 54.3	32.9 33.7	36.7	59.2 64.3	39.3 45.9	35.1 38.8	56.7 61.2	37.3
EdgeViT-S	22.6	43.4	64.9	46.5	26.9	47.5	58.1	32.8	44.8	67.4	48.9	41.0	64.2	43.8

COCO Instance Segmentation

Backbone	Semantic FPN					
	#Param (M)	GFLOPs	mloU (%)			
PVTv2-B0	7.6	25.0	37.2 30 7			
Luge VII-AAS	1.5	24.4	59.1			
EdgeViT-XS	10.6	27.7	41.4			
ResNet18	15.5	32.2	32.9			
PVTv1-Tiny	17.0	33.2	35.7			
PVTv2-B1	17.8	34.2	42.5			
EdgeViT-S	16.9	32.1	45.9			

Source code: https://github.com/saic-fi/edgevit