

ST-Adapter: Parameter-Efficient Image-to-Video

Transfer Learning

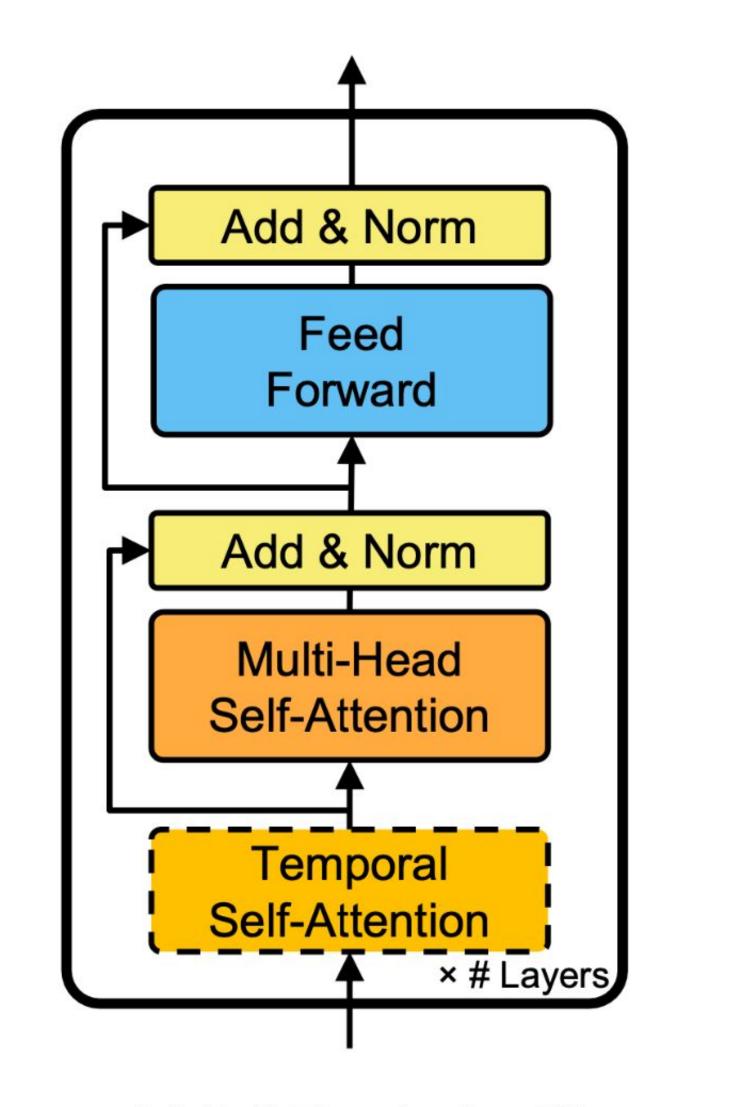
Junting Pan*, Ziyi Lin*, Xiatian Zhu, Jing Shao, Hongsheng Li

1. Efficient Image-to-Video Transfer Learning

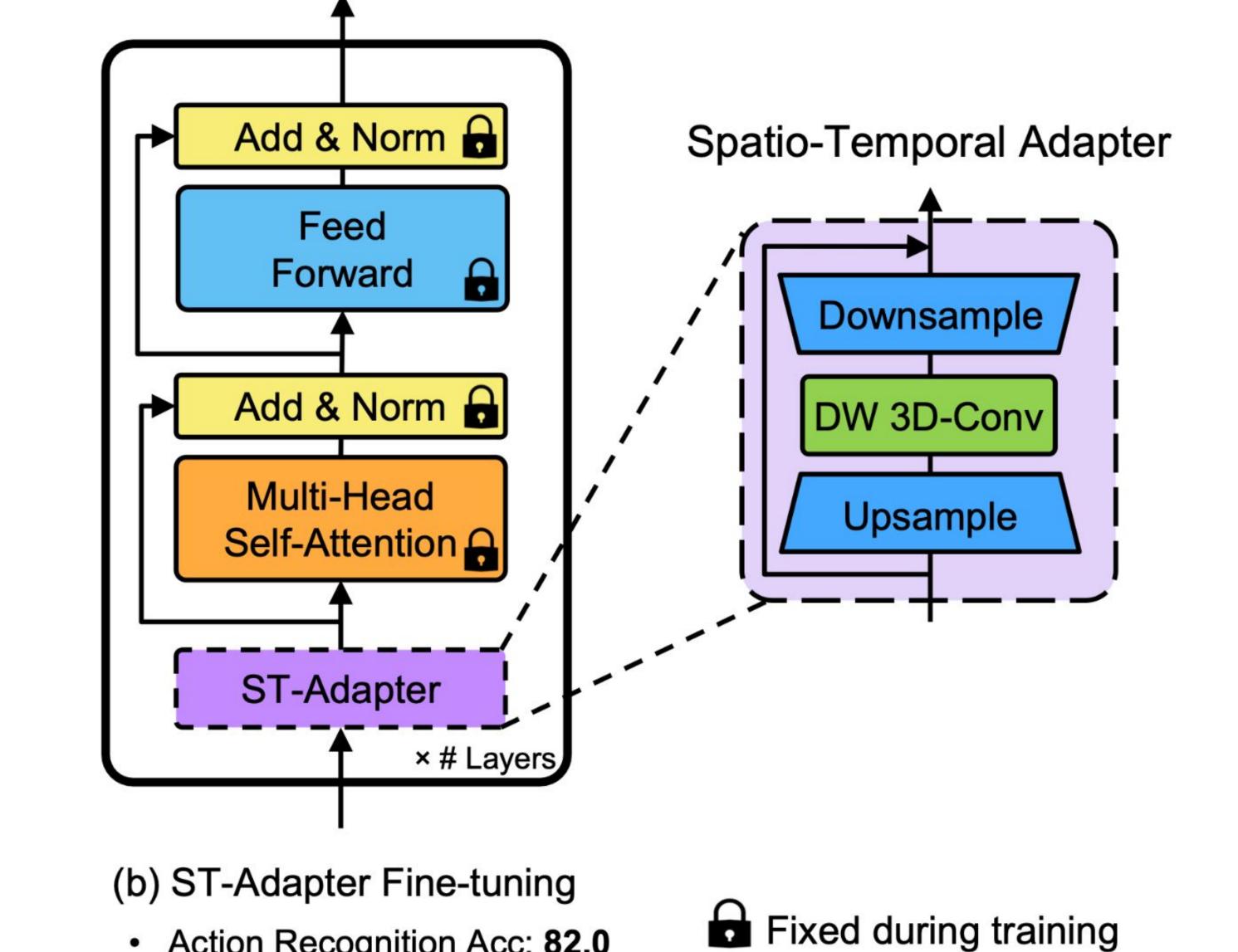
Video pre-training is more challenging

- Data: difficult to collect, store and manage
- Training: long and compute more hungry

Our goal:


- Efficiently adapting pre-trained image models for video tasks.

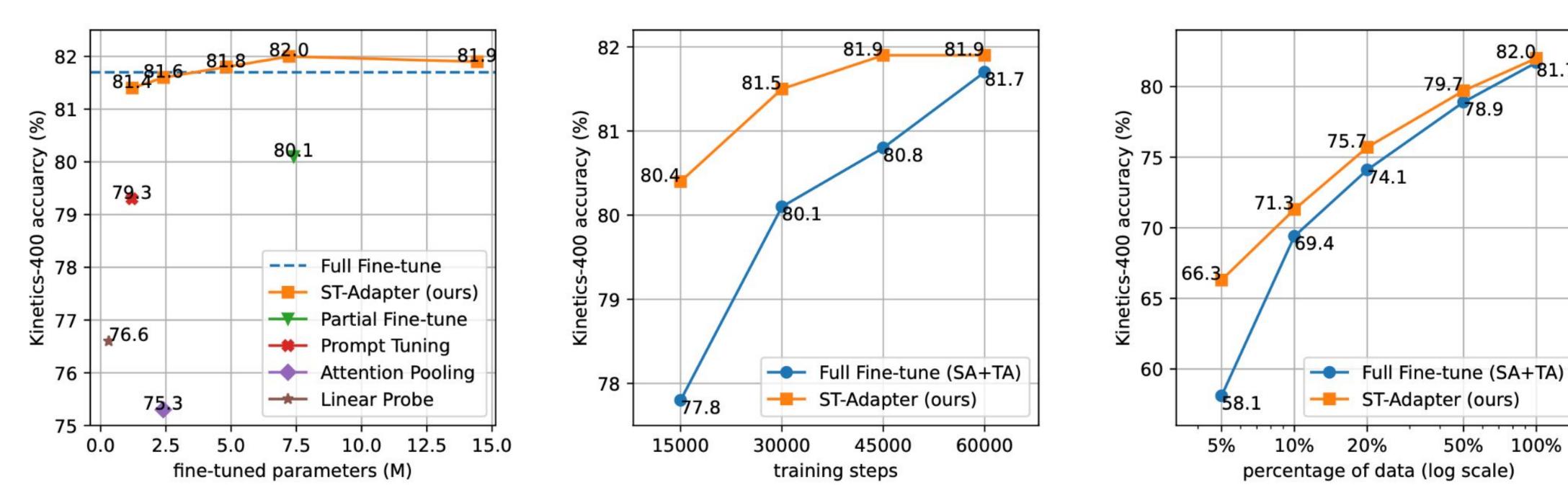
2. ST-Adapter


$$\mathtt{ST-Adapter}(\mathbf{X}) = \mathbf{X} + f\Big(\mathtt{DWConv3D}(\mathbf{XW}_{down})\Big)\mathbf{W}_{up},$$

Action Recognition Acc: 82.0

Updated Param: 8.3%

- (a) Full Fine-tuning [6]
- Action Recognition Acc: 81.7
- Updated Param: 141.2%


[_ Newly added to ViT [18]

3. Cross-Modality Fine-Tuning Benchmark

				CL	IP	ImageNet-21K	
Fine-tuning Methods	Architecture	TM?	Fine-tuned Params (M)	K400	SSv2	K400	SSv2
Full Fine-tuning	SA SA + TA [6] SA + TS [9]	✓	86.11 121.57 93.79	81.0 81.7 78.0	44.0 66.1 62.0	76.9 78.0 78.5	40.0 59.5 64.4
Partial Fine-tuning	SA SA + TA	✓	7.40 10.36	80.1	37.6 57.5	61.7 63.1	20.4 29.3
Temporal Fine-tuning	SA + TA	/	35.8	81.3	59.4	76.5	51.9
Prompt Tuning	SA		1.18	79.3	39.3	71.4	26.3
Attentional Pooling	SA	/	2.36	75.3	21.5	59.1	15.1
Linear Probe	SA		0.31	76.6	21.9	60.1	14.8
Adapter [27]	SA		6.77	81.6	46.2	76.2	40.5
ST-Adapter (ours)	SA	✓	7.20	82.0	66.3	76.6	62.8

The TM? column shows whether the method includes temporal modelling.

4. Ablation Study on Efficiency

The same ViT-B/16 with CLIP pre-training is used for all experiments.

5. Results

Comparison on Kinetics 400

Model	Pretrain	#Frames	GFlops	Top-1	Top-5
Methods with full-finetuning	g				
TimeSformer-L[6]	IN21K	$96\times3\times1$	7140	80.7	94.7
X-ViT[9]	IN21K	$16 \times 3 \times 1$	850	80.2	94.7
Mformer-HR[48]	IN-21K	$16\times3\times10$	28764	81.1	95.2
MViT-B,32 \times 3[20]	_	$32\times1\times5$	850	80.2	94.4
ViViT-L[2]	JFT300M	$16\times3\times4$	17352	82.8	95.3
Swin-L(384)[44]	IN21K	$32\times5\times10$	105350	84.9	96.7
UniFormer-B[38]	IN1K	$32\times1\times4$	1036	82.9	95.4
VATT-Large(320)[1]	HowTo100M	$32\times3\times4$	29800	82.1	95.5
TokenLearner[56]	JFT300M	$64 \times 3 \times 4$	48912	85.4	96.3
ViT-B w/o ST-Adapter	CLIP	$8\times3\times1$	419	81.0	95.5
ViT-L w/o ST-Adapter	CLIP	$8\times3\times1$	1941	85.8	97.2
Methods with frozen backbo	one				
Our ViT-B w/ ST-Adapter	CLIP	$8\times3\times1$	455	82.0	95.7
Our ViT-L w/ ST-Adapter	CLIP	$8\times3\times1$	2062	86.7	97.5

Comparison on Something-Something v2

Model	Pretrain	#Frames	GFlops	Top-1	Top-5
Methods with full-finetuning	3				
TimeSformer-HR[6]	IN21K	$16\times3\times1$	5109	62.5	_
X-ViT[9]	IN21K	$32\times3\times1$	1270	65.4	90.7
Mformer-L[48]	IN21K+K400	$32\times3\times1$	3555	68.1	91.2
ViViT-L[2]	IN21K+K400	$16\times3\times4$	11892	65.4	89.8
MViT-B-24,32×3[20]	K600	$32\times1\times3$	708	68.7	91.5
Swin-B[44]	IN21K+K400	$32\times3\times1$	963	69.6	92.7
UniFormer-B[38]	IN1K+K600	$32\times3\times1$	777	71.2	92.8
ViT-B w/o ST-Adapter	CLIP	$8\times3\times1$	419	44.0	77.0
ViT-L w/o ST-Adapter	CLIP	$8\times3\times1$	1941	48.7	77.5
Methods with frozen backbo	ne				
Our ViT-B w/ ST-Adapter	CLIP	$8\times3\times1$	489	67.1	91.2
Our ViT-L w/ ST-Adapter	CLIP	$8\times3\times1$	2062	70.0	92.3

References:

[6] Bertasius et.al. Is Space-Time Attention All You Need for Video Understanding? ICML

[18] Dosovitskiy et. al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021