6. Supplementary Materials

6.1. Implementation Details

Network Architectures. The network architectures of CR-GAN are listed in Table 8, 9, 10. We describe each layer or residual block as "conv-(K-, N-, S-, P-, PS/PV, IN/BN, LReLU)", "res(K-, N-, S-, P-, PS/PV, IN/BN, LReLU)". K: kernel size, N: number of filters, S: stride size, P: padding size, PS: padding='same', PV: padding='valid', IN: instance normalisation, BN: batch normalisation, LReLU: LeakyReLU. U: upsampling with kernel size 2×2 . Input image size " $H \times W$ " is 224×112 .

Part Name	Input \rightarrow Output Shape	Layer Description			
Dual-Path Encoding	$(H, W, 3) \rightarrow \left(\frac{H}{2}, \frac{H}{2}, 64\right)$	context pathway: conv-(K-4×4, N-64, S-2, P-0, PS, LReLU)			
	$(H, W, 3) \rightarrow \left(\frac{H}{2}, \frac{H}{2}, 64\right)$	identity pathway: conv-(K-4×4, N-64, S-2, P-0, PS, LReLU			
	$\left(\frac{H}{2}, \frac{H}{2}, 128\right) \rightarrow \left(\frac{H}{4}, \frac{W}{4}, 128\right)$	res-(K-4×4, N-128, P-0, PS, LReLU)			
	$\left(\frac{H}{4}, \frac{H}{4}, 128\right) \rightarrow \left(\frac{H}{8}, \frac{W}{8}, 256\right)$	$res-(K-4\times4, N-256, P-0, PS, LReLU)$			
U-Net (encoder)	$\left(\frac{H}{8}, \frac{H}{8}, 256\right) \rightarrow \left(\frac{H}{16}, \frac{W}{16}, 512\right)$	$res-(K-4\times4, N-512, P-0, PS, LReLU)$			
	$\left(\frac{H}{16}, \frac{H}{16}, 512\right) \rightarrow \left(\frac{H}{32}, \frac{W}{32}, 512\right)$	$res-(K-4\times4, N-512, P-0, PS, LReLU)$			
	$\left(\frac{H}{32}, \frac{H}{32}, 512\right) \rightarrow \left(\frac{H}{64}, \frac{W}{64}, 512\right)$	$res-(K-4\times4, N-512, P-0, PS, LReLU)$			
	$\left(\frac{H}{64}, \frac{H}{64}, 512\right) \rightarrow \left(\frac{H}{128}, \frac{W}{128}, 512\right)$	$res-(K-4\times4, N-512, P-0, PS, LReLU)$			
	$\left(\frac{H}{128}, \frac{W}{128}, 512\right) \rightarrow \left(\frac{H}{256}, \frac{W}{256}, 512\right)$	$\operatorname{conv-}(\operatorname{K-4} \times 4, \operatorname{N-512}, \operatorname{S-2}, \operatorname{P-0}, \operatorname{PS})$			
	$\left(\frac{H}{256}, \frac{H}{256}, 512\right) \rightarrow \left(\frac{H}{128}, \frac{W}{128}, 512\right)$	$U + res-(K-4 \times 4, N-512, P-0, PS, IN, ReLU)$			
	$\left(\frac{H}{128}, \frac{H}{128}, 1024\right) \rightarrow \left(\frac{H}{64}, \frac{W}{64}, 512\right)$	$\text{U} + \text{res-}(\text{K-}4 \times 4, \text{N-}512, \text{P-}0, \text{PS}, \text{IN}, \text{ReLU})$			
U-Net (decoder)	$\left(\frac{H}{64}, \frac{H}{64}, 1024\right) \rightarrow \left(\frac{H}{32}, \frac{W}{32}, 512\right)$	$\text{U} + \text{res-}(\text{K-}4 \times 4, \text{N-}512, \text{P-}0, \text{PS}, \text{IN}, \text{ReLU})$			
	$\left(\frac{H}{32}, \frac{H}{32}, 1024\right) \rightarrow \left(\frac{H}{16}, \frac{W}{16}, 512\right)$	$\text{U} + \text{res-}(\text{K-}4 \times 4, \text{N-}512, \text{P-}0, \text{PS}, \text{IN}, \text{ReLU})$			
	$\left(\frac{H}{16}, \frac{H}{16}, 1024\right) \rightarrow \left(\frac{H}{8}, \frac{W}{8}, 256\right)$	$\text{U} + \text{res-}(\text{K-}4 \times 4, \text{N-}256, \text{P-}0, \text{PS}, \text{IN}, \text{ReLU})$			
	$\left(\frac{H}{8}, \frac{H}{8}, 512\right) \rightarrow \left(\frac{H}{4}, \frac{W}{4}, 128\right)$	$\text{U} + \text{res-}(\text{K-}4 \times 4, \text{N-}128, \text{P-}0, \text{PS}, \text{IN}, \text{ReLU})$			
	$\left(\frac{H}{4}, \frac{W}{4}, 256\right) \rightarrow \left(\frac{H}{2}, \frac{W}{2}, 128\right)$	$\text{U} + \text{conv-}(\text{K-}4 \times 4, \text{N-}128, \text{S-}1, \text{P-}0, \text{PS}, \text{IN}, \text{ReLU})$			
Decoding	$\left(\frac{H}{2}, \frac{W}{2}, 128\right) \rightarrow \left(H, W, 3\right)$	residual map: U + conv-(K-4×4, N-3, S-1, P-0, PS, tanh)			
-	$\left(\frac{H}{2}, \frac{W}{2}, 128\right) \rightarrow (H, W, 1)$	context mask: U + conv-(K-4×4, N-1, S-1, P-0, PS, sigmoid)			

Table 8: Network architecture of dual conditional image generator. Note that the U-Net contains skip connections that are helpful to preserve the underlying image structure across network layers. Downsampling and upsampling residual blocks are depicted in Figure 8.

Figure 8: Left: Downsampling residual block. Right: Upsampling residual block. Note: conv layer is introduced in the shortcut connection as the number of feature maps in input and output are not necessarily the same in the U-Net.

Part Name	Input $ ightarrow$ Output Shape	Layer Description		
Input Layer	$(H, W, 3) \to (H, W, 3)$	additive Gaussian noise $\mathcal{N}(0, 0.1)$		
	$(H, W, 3) \to (\frac{H}{2}, \frac{W}{2}, 128)$	$conv\text{-}(K\text{-}4{\times}4,N\text{-}128,S\text{-}2,P\text{-}2,PV,LReLU)$		
Hidden Layers	$\left(\frac{H}{2}, \frac{W}{2}, 128\right) \rightarrow \left(\frac{H}{4}, \frac{W}{4}, 256\right)$	$conv-(K-4\times4, N-256, S-2, P-2, PV, IN, LReLU)$		
	$\left(\frac{H}{4}, \frac{W}{4}, 256\right) \rightarrow \left(\frac{H}{4}, \frac{W}{4}, 512\right)$	$conv\text{-}(K\text{-}4{\times}4,N\text{-}512,S\text{-}1,P\text{-}2,PV,IN,LReLU)$		
	$\left(\frac{H}{4}, \frac{W}{4}, 512\right) \rightarrow \left(\frac{H}{4}, \frac{W}{4}, 512\right)$	$conv\text{-}(K\text{-}4{\times}4,N\text{-}512,S\text{-}1,P\text{-}2,PV,IN,LReLU)$		
Output Layer	$\left(\frac{H}{4}, \frac{W}{4}, 512\right) \rightarrow \left(\frac{H}{4}, \frac{W}{4}, 1\right)$	$conv-(K-4 \times 4, N-1, S-1, P-2, PV, sigmoid)$		

Table 9: Network architecture of domain discriminator D_d .

Part Name	Input \rightarrow Output Shape	Layer Description			
Hidden Layers	$(H, W, 3) \rightarrow \left(\frac{H}{2}, \frac{W}{2}, 64\right)$	conv-(K-4×4, N-64, S-2, P-1, PV, LReLU)			
	$\left(\frac{H}{2}, \frac{W}{2}, 64\right) \rightarrow \left(\frac{H}{4}, \frac{W}{4}, 128\right)$	$\texttt{conv-}(\texttt{K-4}{\times}4,\texttt{N-128},\texttt{S-2},\texttt{P-1},\texttt{PV},\texttt{BN},\texttt{LReLU})$			
	$\left(\frac{H}{4}, \frac{W}{4}, 128\right) \rightarrow \left(\frac{H}{8}, \frac{W}{8}, 256\right)$	$conv\text{-}(K\text{-}4{\times}4,N\text{-}256,S\text{-}2,P\text{-}1,PV,BN,LReLU)$			
	$(\frac{H}{8}, \frac{W}{8}, 256) \rightarrow (\frac{H}{16}, \frac{W}{16}, 512)$	$\texttt{conv-}(\texttt{K-4}{\times}4,\texttt{N-512},\texttt{S-2},\texttt{P-1},\texttt{PV},\texttt{BN},\texttt{LReLU})$			
Pooling Layer	$\left(\frac{H}{32}, \frac{W}{32}, 512\right) \to (1, 1, 512)$	average-pooling & dropout=0.999			
Output Layer	$(1, 1, 512) \rightarrow C$ -way softmax	conv-(K-1×1, N-C, S-2, softmax)			

Table 10: Network architecture of camera discriminator D_{cam} .

Training Procedures. As aforementioned in Alg. 1, the training process is divided into three steps. First, for initialisation, we pre-train the identity discriminator (ResNet50), camera discriminator for 30,000 iterations. Second, we train the image generator, domain discriminator from scratch for 60,000 iterations. Third, we fine-tune the ResNet50 using synthetic data produced by the image generator on-the-fly. We only apply random flipping as data augmentation.

6.2. Additional Ablation Study

We additionally illustrate the superiority of using CR-GAN to produce realistic synthetic data in comparison to an easy "*cut, paste and learn*" [12] image synthesis approach originally proposed for instance detection. Specifically, we first *cut* the source person segment and *paste* it to the target background. Then, we train the re-id model upon the "*cut and paste*" synthetic data. Figure 9 illustrates that the "*cut and paste*" synthetic data not only contains various artifacts – some identity relevant cue (e.g. backpack) is missing due to incomplete person mask; but it also cannot capture the lighting nor colour tones of the target domain. These limitations are in line with its weaker performance as shown in Table 11, where "*cut, paste and learn*" yields even worse re-id results than "Direct Transfer". Overall, this demonstrates the necessity of designing our CR-GAN to generate synthetic training data in higher fidelity and diversity for enhancing the cross-domain generalisability.

target	instance	s X _T						
				$S \rightarrow T$	Market-	→Duke	Duke→	Market
			00 7	Metrics (%)	R1	mAP	R1	mAP
		, paste	guide	Direct Transfer	36.9	20.5	47.5	20.0
- · @	9			cut, paste and learn [12]	21.6↓	9.0↓	26.5↓	11.3↓
6	10	cut cut cut cut cut	AAAA	CR-GAN	52.2	30.0	59.6	29.6
ALL R	YOP.			CR-GAN+LMP	56.0	33.3	64.5	33.2
fel.	V			Table 11: Ablation study	y in comp	parison t	o "cut, p	aste and
X_S	M_S	(a) cut and paste	(b) CR-GAN					

Figure 9: Synthetic images by (a) "*cut and paste*" and (b) CR-GAN. X_S : source image; X_T : target image; M_S : parsing mask of X_S .

6.3. Additional Qualitative Results

We additionally visualise the synthetic data by CR-GAN on four different domain pairs as shown in Figure 10, 11, 12, 13. The visualisation shows that CR-GAN is capable of producing abundant data augmented with different *background clutters*, *colour tones* and *lighting conditions*, explicitly guided by the target instances randomly sampled from the target domain.

Figure 10: Synthetic data by CR-GAN on Market1501 \rightarrow DukeMTMCreID. X_S : source image; X_T : target image; M_S : parsing mask of X_S ; $1 - X_C$: the inverse of context mask; X_G : generated image.

Figure 11: Synthetic data by CR-GAN on CUHK03 \rightarrow DukeMTMCreID. X_S : source image; X_T : target image; M_S : parsing mask of X_S ; $1 - X_C$: the inverse of context mask; X_G : generated image.

Figure 12: Synthetic data by CR-GAN on DukeMTMCreID \rightarrow Market1501. X_S : source image; X_T : target image; M_S : parsing mask of X_S ; $1 - X_C$: the inverse of context mask; X_G : generated image.

Figure 13: Synthetic data by CR-GAN on CUHK03 \rightarrow Market1501. X_S : source image; X_T : target image; M_S : parsing mask of X_S ; $1 - X_C$: the inverse of context mask; X_G : generated image.