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a b s t r a c t 

Website fingerprinting (WF) attack aims to identify which website a user is visiting from the traffic 

data patterns. Whilst existing methods assume many training samples, we investigate a more realistic 

and scalable few-shot WF attack with only a few labeled training samples per website. To solve this 

problem, we introduce a novel Meta-Bias Learning (MBL) method for few-shot WF learning. Taking the 

meta-learning strategy, MBL simulates and optimizes the target tasks. Moreover, a new model parameter 

factorization idea is introduced for facilitating meta-training with superior task adaptation. Expensive ex- 

periments show that our MBL outperforms significantly existing hand-crafted feature and deep learning 

based alternatives in both closed-world and open-world attack scenarios, at the absence and presence of 

defense. 

© 2022 Published by Elsevier Ltd. 
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. Introduction 

For privacy protection in Internet use, anonymity networks have 

layed an increasingly more important role. Among existing tech- 

iques, Tor network [1] is one of the best choices [2] . Security is

lways not absolute. It is found that the patterns of data trans- 

ortation before reaching Tor servers can leak critical user infor- 

ation, although the web data themselves are encrypted. For in- 

tance, this can be done by a local passive attacker through captur- 

ng furtively the traffics between a user and the guard node of Tor 

etworks, with the attacking positions including any devices in the 

ame local area network (LAN) or wireless network, switch, router, 

nd compromised Tor guard node. With such data, the attacker is 

ikely to reason about which website a target user is visiting. As a 

ype of side channel attack, this approach is often known as web- 

ite fingerprinting (WF) attack [3] . 

Specifically, to implement a WF attack automatically, the at- 

acker needs to first collect and label clean fingerprints for every 

ndividual website, and then design/learn informative features of 

hese fingerprints for accomplishing attack via machine learning 
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ethods. Earlier methods rely on hand-crafting features manually 

esigned with expert domain knowledge and have continuously 

mproved the attacking performances [3–12] . A common weakness 

f these methods is that their features are highly sensitive to data 

ontent ( e.g. , characteristics and implementation details of Tor), 

etwork environment, and Tor Browser Bundle. This restricts their 

sability in real applications. In contrast to manually-designed fea- 

ures, deep learning can totally avoid the slow and tedious pro- 

ess of accumulating domain knowledge by automatically learn- 

ng feature representations from the training data [13] . Motivated 

y this favourable property, several latest state-of-the-art studies 

14–16] have attempted to leverage deep learning for more scal- 

ble WF attack. 

Existing deep learning methods can work well only when a 

ufficiently large number ( e.g. , hundreds) of training samples are 

vailable for every target website. That is data hungry. Given small 

raining data, deep models are not necessarily superior [14] . Im- 

ortantly, this means not only a lengthy and expensive annotation 

rocess, but also an artificial assumption that all target websites 

re known in advance. In contrast, a real-world WF attack system 

eeds to deal with new websites frequently due to the dynamic 

hange in attacking requirements and conditions. This leads to a 

emand that the attacking method can be adapted to new tasks 

apidly without a need to collect a big training set and re-train the 

odel from scratch every time a new task arrives. 

https://doi.org/10.1016/j.patcog.2022.108739
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108739&domain=pdf
mailto:chenmantun19@nudt.edu.cn
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To meet such real-world requirements, a more realistic and 

calable problem setup is few-shot WF attack where only a handful 

f labeled training samples per new class/website needs to be col- 

ected. This setup is indeed studied for the first time by a recent 

ethod Triplet Fingerprinting (TF) [17] . Specifically, TF trains a fea- 

ure extraction model with triplet based ranking objective function 

nd applies the nearest neighbour classifier in the trained feature 

pace. This is inefficient in exploiting large-scale auxiliary train- 

ng data and tackling the mismatch problem between the training 

nd test settings. Later, Chen et al. [18] explored the data augmen- 

ation idea to boost the performance of deep learning WF attack 

ethods. However, this method is unsatisfactory in small training 

ata cases ( e.g. , less than 10 training samples per class). To over-

ome this limitation, Transfer Learning Fingerprinting Attack (TLFA) 

19] was recently proposed by training a strong embedding model 

nd leveraging classical machine learning models ( e.g. , SVM) on 

op. Nonetheless, this method remains inferior in the 1-shot case 

specially for the open-world setting. 

To address the aforementioned limitations, we introduce a 

ovel Meta-Bias Learning (MBL) method in a meta-learning prin- 

iple. Instead of learning a deep metric model, we simulate and 

ptimize the setting of target tasks explicitly via episodic train- 

ng. Moreover, a new parameter factorization idea is introduced 

o that only a small fraction needs meta-training. This in turn al- 

ows to more effectively exploit large pre-training data via learning 

e-usable feature representation across different tasks. We adopt 

 more scalable classifier design as compared to the triplet met- 

ic learning loss. Altogether, our method can transfer more useful 

nowledge from large-scale auxiliary training data to different new 

asks with limited labels. 

We summarize the contributions of this paper: 

(I) We investigate the under-studied, more realistic, and more 

challenging few-shot website fingerprinting attack problem. 

Beyond the existing metric learning [17] , data augmenting 

[18] and transfer learning [19] attempts, we propose a more 

advanced meta-learning approach. Crucially, we further fo- 

cus on the model learning scalability for knowledge transfer 

efficacy, and model optimization strategy for task adaptation 

capability. 

(II) We propose a novel Meta-Bias Learning (MBL) method for 

solving few-shot WF attack. Specifically, we introduce a no- 

tion of parameter factorization, which avoids the need of 

meta-training the whole model. With this design, a majority 

fraction of parameters can be allocated to learn generic re- 

usable feature representations useful for all different tasks, 

whilst the remaining used for more effective task adapta- 

tion. 

(III) Extensive experiments show that our MBL outperforms sig- 

nificantly previous state-of-the-art methods in both closed- 

world and open-world few-shot WF attack scenarios, with 

and without defense. In particular, we also introduce new 

performance metrics for the open-world setting with more 

comprehensive measurements. Crucially, it is shown that 

MBL is the only method that can operate strongly for open- 

world 1-shot settings. 

. Related work 

.1. Problem objectives, scenarios and assumptions 

The objective of WF attack is to identify which website a vic- 

im user is interacting with among a set of monitored target web- 

ites. By considering each website as a unique class, it is essen- 

ially a multi-class classification problem. There are several differ- 

nt scenarios with specific assumptions. The most common sce- 
2 
ario is closed-world WF attack, where the victim user is assumed 

o only visit a set of known target websites under monitoring. This 

ssumption however is not realistic, and therefore discarded in the 

pen-world scenario. In this more realistic scenario, the victim user 

s considered to likely visit any websites, including those moni- 

ored ones, as typically experienced in most real-world applica- 

ions. 

Unlike the two above settings, a third scenario additionally con- 

iders attacking defense where the user takes some actions to de- 

end against a potential attack. This would lead to higher attack 

ifficulty. Representative defense techniques include Buflo [20] , 

amaraw [21] , Walkie-Talkie [22] , WTF-PAD [23] , FRONT [24] , GLUE 

24] and TrafficSliver [25] . Among them, WTF-PAD is considered ar- 

uably as one of the most promising defense methods for Tor net- 

orks due to low bandwidth overhead and zero delay, although it 

s still in the experimentation stage. Recently, an even stronger de- 

ense method called FRONT [24] was developed, characterized by 

 zero-delay property. We consider both WTF-PAD and FRONT de- 

enses in our evaluations. 

In the literature, several common assumptions are typically 

ade. We briefly discuss three main aspects in the following. In 

erms of user behavior , it is assumed that all Tor users browse 

ebsites sequentially and only interact with a single website at 

 time. This simplifies the data traffic patterns. In terms of back- 

round traffic data , the attacker is assumed to be able to collect 

ll the clean traces generated during the victim’s visits against dy- 

amic background data. This is increasingly possible as shown in 

26] , the multiplexed TLS traffic can be split into individual en- 

rypted connections to each website. In terms of network condition , 

he attacker is assumed to have the same conditions as the victim 

ser, including traffic condition and browser settings. To compare 

ith the benchmark results, we follow these general assumptions 

or fair evaluations. 

In this study, we focus on addressing the following challenge. 

ften, the attacker assumes that the training data have a similar 

istribution as the deployment data, e.g. , the training and testing 

ebsites are identical. This is a particularly strong and artificial as- 

umption that often does not stand. This is because the network 

ondition and task requirement are actually changing and evolv- 

ng frequently. With the realistic dynamic property, the attacker 

eeds to update the training data in order to have a robust at- 

acking model over time. To that end, the attacker must collect a 

arge set of training data at each time, which however, is infea- 

ible and non-scalable due to high acquiring costs. Unfortunately, 

xisting WF attack works [6,7,9,12,14–16] often ignore this aspect 

y assuming the availability of large training data all the time. 

Considering that a large number of training samples from non- 

arget websites can be easily collected in advance, we study the 

ew-shot learning setting in WF attack. Specifically, we only as- 

ume only a handful of labeled training samples for every target 

test) website. To enable model optimization, an independent large 

raining set collected from other websites are often used for learn- 

ng task-agnostic knowledge. This meets more real-world require- 

ents, which however is largely under-studied in the WF attack 

iterature. 

.2. Website fingerprinting attack methods 

For Tor networks, the development of website fingerprinting at- 

ack methods can be divided into three categories: traditional web- 

ite fingerprinting [6,7,9,11,12] , deep website fingerprinting [14–

6] , and few-shot website fingerprinting [17–19] , as summarized 

n Table 1 . The first category utilizes largely inferior features man- 

ally designed based on the attacker’s knowledge about anony- 

ous traffic and applies traditional machine learning algorithms. 

ecently, with the fast advance of deep learning [13] , the advan- 
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Table 1 

Representative website fingerprinting attack methods. ML: Machine Learning; DL: Deep Learning; ETD: Extra Training Data. 

Paper Technique Input type Model type ETD 

Herrmann et al. 2009 [6] Multinomial Naïve Bayes 

Classifier 

The normalized frequency distribution 

of observable IP packet sizes 

ML No 

Wang and Ian. 2013 [12] Distance-based Metrics, 

Support vector machine 

Tor cells ML No 

k-NN, Wang et al. 2014 [10] k-Nearest Neighbour classifier A large feature set with weight 

adjustment 

ML No 

CUMUL, Panchenko et al. [12] Support Vector Machine (SVM) The cumulative representation of a 

trace 

ML No 

k-FP, Hayes and Danezis. 2016 [11] k-Nearest Neighbour classifier, 

random decision forests 

Packets statistics ML No 

DF, Sirinam et al. 2018 [15] VGG-like network Directional sequence of Tor cells DL No 

Var-CNN, Bhat et al. 2019 [16] ResNet-18, Dilated causal 

convolutions 

Ensemble of timing and direction, 

Cumulative statistical features 

DL No 

HDA, Chen et al. 2021 [18] Data augmentation Directional sequence of Tor cells DL No 

TF, Sirinam et al. 2019 [17] Triplet network, Semi-hard 

triplet mining and k-Nearest 

Neighbour classifier 

Directional sequence of Tor cells ML and DL Yes 

TLFA, Chen et al. 2021 [19] Transfer learning 

fingerprinting attack with 

different classifiers 

Directional sequence of Tor cells ML and DL Yes 

MBL (Ours) Meta-Bias Learning with 

model parameter factorization 

Directional sequence of Tor cells DL Yes 
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age of feature representation learning starts to show great poten- 

ials in WF attack [14] . Different network architectures have been 

esigned and explored to exceed the performance of traditional 

ebsite fingerprinting methods. Despite the encouraging perfor- 

ance of deep website fingerprinting, it has several disadvantages, 

.g. , data hungry or needing a large training set for every target 

ebsite. Few-shot learning is therefore proposed to solve this lim- 

tation [17–19] . 

Traditional website fingerprinting attack methods. The first 

ioneer attack against Tor networks was evaluated by Herrmann 

6] in 2009. It can only achieve an accuracy of 2.96% using around 

0 training samples per website in the closed-world scenario. Later 

n, Wang and Ian [9] propose to represent the traffic data using 

ore fundamental Tor cells ( i.e. , direction data) as a unit rather 

han TCP/IP packets. This representation is meaningful and in- 

ormative as it encodes essential characteristics of Tor data. By 

raining an SVM classifier with a distance-based kernel, a ground- 

reaking performance with 90.9% accuracy was achieved on 100 

ites each with 40 training samples. Recently, Panchenko et al. 

12] propose an idea of sampling the features from a cumulative 

race representation and achieve 91.38% accuracy with 90 train- 

ng instances per website, which is named as CUMUL. Hayes and 

anezis [11] exploit random decision forests to achieve similar re- 

ults, known as k-fingerprinting (k-FP). A typical design of these 

bove methods is a two-stage strategy including feature design and 

lassifier learning. In general, this approach is not only constrained 

y the limitations of hand-crafted features but also lacks interac- 

ion between feature representation and classifier model, making 

he model performance inferior. Deep website fingerprinting at- 

ack methods. Motivated by the remarkable success of deep learn- 

ng techniques in computer vision, natural language processing, 

nd other fields [27–36] , several deep learning WF attack meth- 

ds have been introduced [14–16] . This paradigm can well solve 

he aforementioned weaknesses as discussed above. Instead of de- 

igning features based on domain knowledge, deep learning meth- 

ds carry out feature representation learning and classification op- 

imization from the raw training data end-to-end , without the need 

or mastering rich domain knowledge. For example, using VGG- 

ike network [37] as the backbone, Sirinam et al. [15] propose a 

eep Fingerprinting (DF) attack model and attain 98.3% accuracy 

n 95 websites. However, this method needs a large training set 

 e.g. , 10 0 0 training samples per website), otherwise, it will suffer

rom significant performance drop. When using 50 training sam- 
3 
les per website, DF can only hit around 90% accuracy. To over- 

ome this limitation, Bhat et al. [16] developed the Var-CNN model 

sing ResNet [38] and dilated causal convolution [39,40] . When 

mall training sets ( e.g. , 100 samples per website) are available, 

t achieves superior performance over DF. Nonetheless, it is also 

ependent on less stable time based features and less scalable 

and-crafted statistical information. So it is not able to solve the 

imitations of earlier alternatives. Besides, It’s worth mentioning 

hat Wang et al. [41] made progress on the cross-platform web- 

ite fingerprinting attack problem, which is orthogonal to the focus 

f our work. Few-shot website fingerprinting attack methods. 

here are three main few-shot website fingerprinting attack meth- 

ds: Triplet Fingerprinting (TF) [17] , Harmonious Data Augmenta- 

ion (HDA) [18] , and Transfer learning Fingerprinting Attack (TLFA) 

19] . To alleviate the need for large training data, metric learning 

s adopted as an effective method in [17] . The main idea of TF is

o learn a metric function with deep neural networks that is ap- 

licable to test classes that are not seen during training. However, 

F is inferior in the formulation. First, it is not scalable to lever- 

ge large scale auxiliary data since the model training relies on 

omplex sample pairs and an elaborate triplet search process. Be- 

ides, it is inferior in design as its model optimization is not explic- 

tly designed for solving the target tasks. To address these above 

imitations, the seminal data augmentation strategy is investigated 

nd tailored particularly for website fingerprinting data, includ- 

ng rotation, masking, and mixing [18] . Nonetheless, this method 

s ineffective for the extreme cases such as 1-shot due to lacking 

f sufficient knowledge about a new class. This weakness can be 

lleviated by a more recent TLFA method [19] that pre-trains a 

eature embedding model on a large auxiliary dataset for knowl- 

dge transfer. On the other hand, this method comes with two ex- 

ra limitations: (1) assuming similar distributions for auxiliary and 

arget datasets, which does not always hold, and (2) no mecha- 

ism to adapt the pre-trained feature embedding to a new task. 

ur method solves all these limitations with a more advanced and 

rincipled formulation – meta-learning. 

.3. Meta-learning 

As the dominant few-shot learning approach, meta-learning has 

he capability of learning a new model with very few examples 

42–45] . That is, it aims to learn a learner that can generalize well 

rom old tasks to new tasks without class overlap across tasks. 



M. Chen, Y. Wang and X. Zhu Pattern Recognition 130 (2022) 108739 

Table 2 

Summary of the main acronyms used across the entire paper. 

Acronym Full name and description 

WF Website fingerprinting 

FS-WFA few-shot website fingerprinting attack 

N-way K-shot N websites unseen before and K samples per new class can be used for training 

CNN Convolutional Neural Networks 

CUMUL Method proposed in the paper [12] . 

k-FP k-fingerprinting, proposed in the paper [38] . 

DF Deep Fingerprinting, proposed in the paper [15] . 

VGG Very Deep Convolutional Networks, propose in the paper [37] . 

Var-CNN Method proposed in the paper [16] 

ResNet Deep Residual Network, proposed in the paper [38] 

GoogleNet CNN model proposed in the paper [46] 

ResNeXT CNN model proposed in the paper [47] 

TF Triplet Fingerprinting, proposed in the paper [17] . 

TF ∗ TF trained by our improved data sampling strategy. 

TLFA Transfer Learning Fingerprinting Attack, proposed in the paper [19] . 

HDA Harmonious Data Augmentation, proposed in the paper [18] . 

HDA + Var-CNN Var-CNN trained by the data augmented by HDA. 

miss Type I A testing sample from one of the monitored sites is incorrectly predicted as unmonitored. 

miss Type II A testing sample from one of the monitored sites is incorrectly predicted as others. 

F NR 2 / F NR m Binary-class/Multi-class False Negative Rate 

T F R 2 / T PR m Binary-class/Multi-class True Positive Rate 

ROC Receiver Operating Characteristic curve 

AUC 2 /AUC m Binary-class/Multi-class Area Under Curve 
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pecifically, it performs the model optimization at the task level 

hat simulates the test few-shot scenario. In such a way, the model 

s learned to adapt to a given new task rapidly with only a few la-

eled training samples. While meta-learning has been extensively 

xplored in computer vision [43] , how well it can address few-shot 

F attack remains unclear and unexplored. In this work, we fill 

his gap by exploring meta-learning for few-shot WF attack for the 

rst time. Our study shows that this is a new and promising di- 

ection that offers a superior solution over existing alternatives in 

erms of both training scalability and model performance. 

To facilitate the reading and understanding, we provide an 

cronyms list for the terminologies used in this paper ( Table 2 ). 

. Method 

.1. Problem context 

We start with the ordinary website fingerprinting attack prob- 

em. The common observations/instances are data traffic traces x 

roduced by one visit to a website y . A machine learning algo- 

ithm aims to train a model that can predict automatically the 

ebsite based on a traffic trace as input. Treating each website as 

 specific class, this is essentially a multi-class classification prob- 

em. For model training, a labeled training set D train = { ( x i , y i ) } N i =1 
s often provided, where y i ∈ Y = { 1 , 2 , · · · , K} specifying one of

target websites. For model testing, a labeled testing set D test = 

 ( ̂ x j , ̂  y j ) } M 

j=1 
is also provided, where the ground-truth labels ˆ y i ∈ Y 

re unseen to the model and used for performance evaluation. 

hilst a number of increasingly stronger deep learning methods 

ased on various Convolutional Neural Network (CNN) models ( e.g. , 

GG [37] , GoogleNet [46] , ResNet [38] , ResNeXT [47] ) have been

roposed, they cannot fully respect the deployment requirements 

f real-world applications. One main reason is that they all make 

rtificial assumptions that the training and testing classes are iden- 

ical, and the user will not visit new websites during the deploy- 

ent time. In practice, these conditions typically do not hold, and 

e often require the model to adapt to new attack tasks ( i.e. , 

ew websites/classes) rapidly with only a handful of labeled train- 

ng samples . We call this problem as few-shot website fingerprinting 

ttack (FS-WFA). 
4 
In FS-WFA, we consider a more realistic problem definition. 

iven a meta-test dataset D test , we sample a N-way K-shot ( N new 

ebsites each with K labeled training samples) classification task 

o test a learned model θ. To train the model θ in a way that it

an perform well on those previously unseen classification tasks, 

eta-training by episodic learning is an intuitive paradigm [17] . 

oncretely, a large number of N-way K-shot tasks are randomly 

ampled from a meta-training set D train , and then used to train the 

odel in an episodic manner. In each episode, we start with sam- 

ling N classes C from D train at random, from which labeled train- 

ng samples are then randomly drawn to create a support set S and 

 query set Q consisting of K and Q samples per class, respectively. 

ormally, the support and query sets are defined as: 

 = { (x i , y i ) | y i ∈ C} NK 
i =1 , (1) 

 = { (x i , y i ) | y i ∈ C} NQ 
i =1 

. (2) 

ote, S ∩ Q = φ are sample-wise non-overlapping. 

Note that as the objective is to obtain a learner able to rec- 

gnize novel classes each with only a few labeled examples, D train 

nd D test are set to be disjoint in the class space, i.e. , D train ∩ D test =
. Unlike the sparsely annotated meta-test classes, each meta- 

raining class comes with abundant labeled training data that al- 

ow to sample a sufficient number of episodes for meta-training. 

imitations of existing methods. There are very few existing 

orks [17–19] which also consider the FS-WFA problem setting. In 

articular, we study the same setting as TF [17] and TFLA [19] . TF

as yielded encouraging results by taking a metric learning strat- 

gy. However, it has several fundamental limitations: (1) Relying 

n the triplets based metric learning, this method suffers from 

omplex pair and triplet construction and more demanding train- 

ng tricks such as hard pairs and triplets mining. This renders TF 

nefficient and ineffective to leverage large training data. (2) Criti- 

ally, its model optimization does not match the scenarios of target 

asks, leading to inferior model performance. 

On the other hand, TFLA has improved the results over TF by 

tilizing the large-scale pre-training data to learn a stronger em- 

edding model. Relying on extra data with a similar distribution 

s the target tasks, this method may suffer from new tasks with 

omain shift and different distributions, as its pre-trained embed- 

ing component is frozen during few-shot learning. 
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Fig. 1. Schematic overview of the proposed Meta-Bias Learning (MBL) model. MBL aims to address the fundamental limitation of existing methods in fast task adaptation 

with a few labeled training samples, i.e. , few-shot WF attack. It is based on meta-learning that simulates and optimizes the scenarios of test tasks in deep learning. Moreover, 

a novel parameter factorization idea is proposed to decompose a standard convolution operations of a CNN model θ into two parts functionally: re-usable feature parameters 

θ f e 
r and task adapting parameters θ f e 

t . To reduce the burden of task adaptation, θ f e 
t is designed to be the bias parameters in a small size ( e.g. , 0.01%). Our MBL is trained 

in two stages. (a) In the first stage, we train the re-usable feature parameters θ f e 
r by supervised classification learning, along with the classifier component θ cl f . This choice 

is computationally efficient and more scalable to large training data as compared to pairwise loss based metric learning. (b) In the second stage, we meta-learn the task 

adapting parameters θ f e 
t by episodic training, which can be added to θ f e 

r to define task-adaptive feature representations, i.e. , task adaptation by meta-learning. As the classes 

of every episode are different, we need to fine-tune the classifier’s parameters θ cl f for every individual task/episode. 
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.2. Meta-bias learning 

To overcome the aforementioned limitations of existing state- 

f-the-art method, we formulate a novel Meta-Bias Learning (MBL) 

odel, as illustrated in Fig. 1 . It is based on meta-learning that 

imulates and optimizes exactly the same scenario of test tasks. 

oreover, the model parameters are factorized into two comple- 

entary components, one is optimized with common supervised 

earning and the other is meta-trained by episodic training. No- 

ably, the latter takes only a very tiny fraction of parameters so 

hat meta-training can be more effectively conducted with a rea- 

onable training difficulty. This design can take advantage of su- 

ervised learning in extracting re-usable feature representations, 

hilst properly leveraging meta-learning’s capability in task adap- 

ation. By exploiting the computationally scalable supervised clas- 

ification learning for the former component, our MBL addresses 

ell all limitations of the state of the art TF concurrently. Architec- 

ure. We consider a deep learning architecture, in particular convo- 

utional neural networks (CNN), that can learn feature representa- 

ions from the raw training data and conduct WF attack via classi- 

cation end-to-end [15] . This avoids complex hand-crafting feature 

ngineering. Since the feature representations are fully parameter- 

zed, this provides us a favourable opportunity for principled fea- 

ure factorization. 

Raw input. For typical Tor networks, the raw representation x of 

 specific traffic trace consists of a sequence of temporally succes- 

ive Tor cells travelling between a target user and a website vis- 

ted. It is derived from TCP/IP data. After discarding retransmitted 
5 
CP/IP packets, TLS records are first reconstructed, their lengths are 

hen rounded down to the nearest multiple of 512 to form the final 

equence data x . In specific data value, each x is a sequence of 1 

outgoing cell) and -1 (incoming cell), with a variable length. This 

aw representation is hence known as direction sample. Besides, 

emporal information about inter-packet time is another type of 

odality, but with high reliance on network conditions. It is there- 

ore not stable even with more noises. We only consider the direc- 

ion data in this study, which are more scalable and generic raw 

ata representations. 

Deep learning model. A CNN model θ consists of two parts: 

 feature encoder θ f e and a classifier θ cl f . Specifically, the fea- 

ure encoder θ f e contains multiple stacked convolutional layers 

ith non-linear activation functions such as ReLU [48] , along with 

ormalization and pooling operations. Our CNN has eight convo- 

utional layers with 32/32/6 4/6 4/128/128/256/256 filters, respec- 

ively. A batch normalization layer is added after each convolu- 

ional layer. The learnable parameters of batch normalization in- 

lude mean and variance. With convolutional operations, the fil- 

ers of each layer transform input sequences using learnable pa- 

ameters and output new feature sequences. We use a kernel size 

f 8 in each convolutional layer to capture local feature patterns. 

y stacking more layers with normalization and pooling operation, 

he model can perceive the information of larger regions and en- 

bles to capture and model wider context information across the 

ime. The feature representations f of individual WF samples x are 

btained as the output vectors of a global average pooling layer. 

mong these layers of the classifier θ cl f , the first FC layer is used 
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Fig. 2. Illustration of the proposed parameter factorization of convolution operations in comparison with the standard one. It is a case of a convolutional layer with five 1D 

kernels, each in the shape of 4 × 1 . (a) For training the standard convolutional network, all the parameters including kernel weights ( e.g. , W in shape of 5 × 4 ) and biases 

( b in shape of 5 × 1 ) are updated in each training iteration. (b) In our method, we factorize the convolution parameters by introducing an extra meta-bias θ f e 
t with the 

same dimension and number as the original bias b. Adding θ f e 
t to b is designed as task adaptation. This brings about two advantages: (1) No need to meta-train the whole 

parameter set but only a small number of meta-bias which is not only more efficient but also more effective. (2) The model can be pre-trained and then frozen to better 

leverage large-scale auxiliary data. 
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o project the feature f to a latent embedding space, which aims 

o distil more compact semantic feature representations. We de- 

ote the whole parameters of the CNN model as θ = [ θ f e , θ cl f ] . 

Parameter factorization. The CNN model MBL, as described above 

s a standard formulation. To improve the efficacy of meta-learning, 

e propose a novel parameter factorization idea. Formally, we fac- 

orize the whole parameters θ of a CNN model( Fig. 2 (a)) into two 

arts: the bias of convolutions as task adapting feature parameters 

t and the rest of convolutions as re-usable feature parameters θr 

 Fig. 2 (b)). This process is formulated as: 

f e −−−−−−→ 

factorizing 
θ f e 

t ( task adapting ) + θ f e 
r ( re-usable ) (3) 

uch a factorization is designed to have a small number of 

ask adapting parameters that need to be meta-learned. In our 

ase, the size of θ f e 
t takes only 0.01% of the whole param- 

ters θ f e . Since the input has only one channel, the num- 

er of task-adaptive parameters is (32 + 64 + 128 + 256) 

2 = 960. Given the parameter number of feature extractor 

s (1 × 32 + 32 × 32 + 32 × 64 + 64 × 64 + 64 × 128 + 128 × 128 +
28 × 256 + 256 × 256) × 8 + 960 + 960 × 2 = 1043520 . So the ra-

io of task-adaptive parameters with respective the feature extrac- 

or is: 

960 

1043520 

≈ 0 . 1% (4) 

This allows to better leverage meta-training. 

Model training. Our MBL is trained in two stages: 

1. In the first stage, we train a CNN network for optimizing re- 

usable feature parameters θ f e 
r along with the classifier parame- 

ters θ cl f . 
6 
2. In the second stage, we meta-optimize task adapting parame- 

ters θt by episodic training, and combine θ f e 
t with θ f e 

r and θ cl f 

to define task-specific models. 

tage 1: Re-usable feature learning. This stage of training follows 

he standard supervised classification learning procedure. Specifi- 

ally, we start with a randomly initialized CNN model. To optimize 

t, we adopt the stochastic gradient descent algorithm for model 

arameter update at every iteration t as: 

(t + 1) =: θ (t) − α∇L D (θ ) (5) 

here L denotes an empirical loss of the current mini-batch D and 

specifies the gradient function of the loss with respect to the 

odel parameters. The hyper-parameter α is known as the learn- 

ng rate. As we have ground-truth labels for every training sample, 

e utilize the softmax based cross-entropy loss function as: 

 D (θ ) = 

1 

|D| 
∑ 

(x,y ) ∈D 
l ( p , y ) (6) 

= 

1 

|D| 
∑ 

(x,y ) ∈D 
− log p (y ) (7) 

here p is the predicted class distribution vector for a training 

ample x with ground-truth label y , and p (y ) takes the y -th prob-

bility value. The objective of this stage is to optimize re-usable 

eature parameters θ f e 
r which will be frozen once trained in the 

ubsequent process. As supervised classification learning is much 

impler and more scalable than triplet based metric learning as 

sed in TF [17] , stronger re-usable feature representations can be 

btained. Stage 2: Meta-Bias Learning. This stage takes the meta- 

earning strategy based on episodic training. The objective is to en- 

ance the re-usable feature model θ f e 
r with task adapting capabil- 

ty essential to FS-WFA. Under the proposed idea, we meta-train 
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he task adapting parameters θ f e 
t ( i.e. , meta bias). This is done by 

earning from a large number of randomly sampled tasks/episodes 

rom the same training data as in Stage 1. 

We design a two-step meta-training algorithm. Given a sampled 

ask (episode) E = {S, Q} including a support set S and a query set

 , the task-specific classifier θ cl f is first optimized by the loss of S
y gradient descent: 

cl f (t + 1) ← θ cl f (t) − β∇ L S 
(
θ cl f | θ f e 

r , θ f e 
t 

)
(8) 

here β is the learning rate, θ f e 
r and θ f e 

t are frozen. It only up- 

ates the parameters θ cl f in the first step. This is because the 

lasses of each episode are different from each other, and the clas- 

ifier needs to update at the beginning. 

In the second step, we then optimize the bias parameters θ f e 
t 

ith the query set Q given the frozen classifier and re-usable fea- 

ure parameters. This is done similarly by gradient descent as: 

f e 
t (t + 1) ← θ f e 

t (t) − γ∇L Q 
(
θ f e 

t | θ cl f , θ f e 
r 

)
(9) 

here θ f e 
t is initialized as zero at the beginning of meta-training 

nce . Note, this is different from θ cl f which needs to be initialized 

andomly and independently for every task. 

To integrate θ f e 
t into the CNN model, we respect the standard 

onvolutional operations for computational compatibility on mod- 

rn hardware platforms by considering the proposed meta bias as 

he residual of original bias. Suppose the l -th layer of our CNN 

odel has K convolutional kernels, denoted as F l . Then, there will 

e K meta bias parameters θ f e 

t,l 
corresponding to F l . For a given in- 

ut feature f l , the two parts are integrated together to conduct a 

onvolution operation in the following manner: 

f 
l+1 = con v (F l , f 

l ) + θ f e 

t,l 
(10) 

here con v () denotes the standard convolutional operation as il- 

ustrated in Fig. 2 . This design brings a few significant advantages: 

1) As the re-usable feature parameters are frozen, catastrophic 

orgetting can be avoided in meta-training. (2) The meta-training 

verload is tiny, so the optimization challenge is mitigated. 

Algorithm Summary. To summarize all details of our 

BL method, we present an algorithm routine ( Algorithm 1 ) 

lgorithm 1 Meta-Bias Learning. 

nput: Training dataset: D train ; 

utput: A FS-WFA CNN model with the re-usable feature θ f e 
r and 

meta-bias θ f e 
t parameters optimized. /* Stage 1: supervised clas- 

sification learning */ 

1: Randomly initialize θ f e 
r and θ cl f ; 

2: for Samples in D do 

3: Calculate L D by Eq. (6); 

4: Optimize θ f e 
r and θ cl f by Eq. (5); 

5: end for /* Stage 2: meta-training with episodes */ 

6: Initialize θ f e 
t by zeros; 

7: Reset θ cl f for the classes of a training episode; 

8: for each iteration in meta-training do 

9: Randomly sample a task/episode from D train ; 

0: Format the episode into a support S and query Q set; 

/* Step 1: adapt the classifier */ 

11: Randomly initialize θ cl f ; 

2: for Sample in S do 

3: Calculate L S ; 
14: Optimize θ cl f by Eq. (8); 

5: end for /* Step 2: adapt the meta-bias and classifier jointly */ 

6: Optimize θ f e 
t by Eq. (9); 

17: end for 

hat covers the key steps of model training. 
7 
.3. Model testing 

In model testing, given a new task with a few labeled training 

amples per class/website, we aim to build a task-specific model. 

pecifically, we freeze the re-usable feature θ f e 
r , and fine-tune the 

arameters θ cl f of the classifier followed by optimizing the meta 

ias θ f e 
t . In this way, the overall feature extractor is optimized par- 

icularly for a specific task via the fine-tuning of θ f e 
t . Since then, 

he whole model is ready to accept testing samples of the current 

ew task for FS-WFA. 

. Experiments 

.1. Datasets and protocols 

We evaluate our MBL on three standard WF attack datasets in 

oth closed-world and open-world scenarios. For closed-world at- 

ack, all test samples are assumed to belong to one of the training 

monitored) classes/websites. For open-world attack, however, the 

bove assumption is eliminated, i.e. , a test sample may be pro- 

uced by a non-target (unmonitored) website. The latter is more 

ealistic yet more challenging as identifying if a test sample is in 

ne of the target classes or not is non-trivial. 

(1) AWF dataset [14] : We use its largest dataset containing a 

otal of 900 monitored target websites, each with 2500 raw fea- 

ure traces. It was collected with Tor Browser 8.5a7 on Tor 0.2.8.11. 

ll 900 websites are divided into a split of 576/144/180 for meta- 

raining (AWF tr ), meta-validation (AWF va ) and meta-test (AWF te ), 

espectively. 

Interestingly, it also provides timestamp data that can be 

sed for evaluating the distribution drift problem during test. 

ince the end of the initial data collection, after a period of g ∈
 3 , 10 , 14 , 28 , 42 } days, an independent set of 100 samples for each

ebsite was collected. These five extra sets allow to evaluate the 

obustness and stability of any test algorithm against the distri- 

ution shift introduced over time. For easy reference, we denote 

hem in the form of AWF 
g 
180 

where g refers to the time gap in data

ollection. These test sets are used for closed-world evaluation. 

For open-world evaluation, another set of 400K samples AW- 

UM 400K from unmonitored websites can be used. Each of these 

amples was generated by a visit to a page of the top 400K of 

lexa websites. To enrich the test setting, we randomly select sam- 

les from AWFUM 400K as the distracting data. 

(2) DS-19 100 [24] : This is the latest dataset collected with Tor 

rowser 8.5a7 on Tor 0.4.0.1-alpha in 2019, containing 100 home- 

ages of Alexa top 100 websites. Each homepage has 100 in- 

tances. Compared with AWF, this dataset is smaller but more up- 

o-date. All the websites are divided into the splits of 60/20/20 for 

eta-training (DS-19 tr 
100 

), meta-validation (DS-19 val 
100 

) and meta-test 

DS-19 te 
100 

), respectively. Furthermore, we apply two defense ap- 

roaches, WTF-PAD [49] and FRONT [24] , to defense the dataset 

S-19. These results in DS-19 100 ,pad for the WTF-PAD defense and 

S-19 100 , f ront for the stronger FRONT defense. Similarly as DS- 

9 100 , DS-19 100 ,pad is divided into DS-19 tr 
100 ,pad 

for meta-training, 

S-19 val 
100 ,pad 

for meta-validation and DS-19 te 
100 ,pad 

for meta-test. The 

ame splitting is applied to DS-19 100 , f ront . 

.2. Evaluation metrics 

For the closed-world setting, we use accuracy, precision, recall 

nd F1 score to measure the effectiveness of the attacker, which 

s the proportion of monitored traces correctly identified. Formally, 

hey are defined as: 

ccuracy = 

1 

N 

N ∑ 

i =1 

( P redict(T i ) == Label(T i ) ) (11) 
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 recision = 

1 

L m 

L m ∑ 

l=1 

∑ N 
i =1 ( Label(T i ) == l, P redict(T i ) == l) ) ∑ N 

i =1 ( P redict(T i ) == l ) 
(12) 

ecall = 

1 

L m 

L m ∑ 

l=1 

∑ N 
i =1 ( Label(T i ) == l, P redict(T i ) == l ) ∑ N 

i =1 ( Label(T i ) == l ) 
(13) 

 1 = 2 · P recision · Recall 

P recision + Recall 
(14) 

here T i is the i -th testing trace, N is the number of total testing

races, l is the l -th monitored website label, L m 

is the total number 

f monitored websites, P rediction (T i ) is the predicted label of T i ,

abel(T i ) is the ground-truth label of T i . 

In the open-world setting, we do not assume that all test traces 

re from monitored websites. Instead, most traces captured by an 

ttacker may be generated by unknown/unmonitored websites. Ac- 

uracy rate hence cannot measure this property. 

For open-world setting evaluation, we must quantify three error 

ypes [50] . The first type is false alarm — a trace from an unmon- 

tored website is incorrectly recognized as one monitored website. 

his error is quantified by False Positive Rate (FPR) defined as: 

 P R = 

M um 

N um 

(15) 

here N 

um is the number of all testing traces D um 

generated by 

nmonitored websites, and M 

um is the number of testing traces in 

 um 

but are incorrectly recognized as monitored ones. 

The second type is miss Type I — a testing sample from one of 

he monitored sites D m 

is incorrectly predicted as unmonitored. We 

uantify this by Binary-class False Negative Rate ( F NR 2 ) defined as: 

 NR 

2 = 

M m 

N m 

(16) 

here N m 

= | D m 

| is the total number of testing traces generated by

onitored websites, and M m 

is the number of samples in D m 

but 

istakenly recognized as unmonitored ones. 

The third type is miss Type II — a testing trace x i from D m 

with

he class label y i is incorrectly predicted as another monitored web- 

ite class y j , i 	 = j, or even as unmonitored ones. We denote these

amples collectively as D 

f m 

m 

. Hence this is a more strict measure- 

ent as compared to the first type. We quantify this by Multi-class 

alse Negative Rate ( F NR m ) defined as: 

 NR 

m = 

M 

′ 
m 

N m 

(17) 

here M 

′ 
m 

= | D 

f m 

m 

| . 
In practice, a more intuitive measure may be True Positive Rate 

TPR): 

 P R 

2 = 1 − F NR 

2 (18) 

 P R 

m = 1 − F NR 

m (19) 

In the following open-world experiments, we adopt both 

PR @ FPR measures for performance evaluation. To yield more 

ompact overall results, we generate Receiver Operating Character- 

stic (ROC) curves of TPR-vs-FPR and use two Area Under Curve 

AUC) scores: Binary-class Area Under Curve (AUC 

2 ) focusing on miss 

ype I , and Multi-class Area Under Curve (AUC 

m ) focusing on miss 

ype II . The latter is more difficult and more strict. The formula- 

ions of AUC 

2 and AUC 

m are written as follows: 

UC 2 = 

∫ 1 

2 

T P R 

2 d 

(
F P R 

2 
)

(20) 

F PR =0 

8

UC m = 

∫ 1 

F PR m =0 

T P R 

m d ( F P R 

m ) (21) 

.3. experimental setup 

Network architecture. Our CNN model contains four blocks, 

ach having four convolutional layers with 8 × 1 kernels. Each con- 

olutional layer is followed by an 8 × 1 max-pooling layer and 

 batch-norm layer. The number of convolutional kernels/filters 

tarts from 32 and is doubled from one block to the next. The 

rst block uses the ELU activate function, whilst the remaining 

hree blocks use the ReLU activate function. Following four blocks 

s a mean-pooing layer to compress the output feature maps to 

 feature embedding vector. For other hyper-parameters, we fol- 

ow the same setting as TF [15] for fair comparisons. Supervised 

lassification learning. We adopt the SGD optimizer to train the 

e-usable feature parameters. The learning rate is initialized as 0.1 

nd decays by 0.2 every 30 epochs. We set the dropout rate as 

.1 and batch size as 512. We train a total of 110 epochs. Meta- 

raining setup. For AWF, we consider the 100-class/website WF 

ttack setting. During meta-training, from each class ( i.e. , website), 

e randomly sample K(∈ { 1 , 5 , 10 , 15 , 20 } ) training samples to the

upport set and 15 training samples to the query set for every 

pisode/task. This forms the K-shot cases in the few-shot learn- 

ng WF attack setting. The same process applies to meta-validation 

nd meta-test. For the smaller DF datasets (DS-19 100 , DS-19 100 ,pad , 

S-19 100 , f ront ), we consider the 1-shot, 2-shot, 3-shot, 4-shot and 

-shot WF attack settings using 10 classes. The task-specific clas- 

ifier θ cl f is optimized by batch gradient descent with the learn- 

ng rate of 0.01. It is updated with 100 iterations. The meta-bias 
f e 

t is trained by Adam optimizer, with the learning rate initial- 

zed as 0.0 0 01 and decayed by 0.5 every 100 iterations. For all 

atasets, we sample 80 0 0 random tasks for meta-training, 10 tasks 

or meta-validation, and 600 tasks for meta-test. Meta-validation 

erformance is used to select the final model for meta-test. 

.4. Closed-world few-shot website fingerprint attack 

Setting. We use the classification accuracy, precision, recall and 

1 score as performance metric. We compare with the state-of- 

he-art few-shot learning WF method, Triplet Fingerprinting (TF) 

17] , TFLA [19] , two conventional methods (CUMUL [12] , k-FP [11] )

nd Var-CNN [16] which is trained by Harmonious Data Augmen- 

ation [18] (named as Var-CNN+HDA). In particular, the original TF 

as trained with 25 examples of each training website due to GPU 

emory constraints. For a fair comparison, we select 25 random 

amples for each epoch to supply it with more information whilst 

till keep it trainable on a normal machine. We find this data sam- 

ling strategy can improve TF’s performance. To differentiate from 

he original TF model, we denote this improved variant as TF ∗. For 

LFA, we select its best classifier (Support Vector Machine) and 

mbedding vector (type I, the output vector of the feature extrac- 

or). For AWF dataset, we test all the above algorithms. For DS-19, 

e focus on comparing the top-2 existing methods: TF and TLFA. 

Results. The accuracy results of different methods on the AWF 

ataset are compared in Table 3 . Notably, we omit the results of 

recision, recall and F1 score as they are similar in comparison. 

e have the following observations: 

1. Even though rich domain knowledge is leveraged, hand-crafted 

feature based methods (CUMUL and k-FP) are not competitive 

anymore, no matter how few samples per class are available. 

2. Few-shot learning methods (TF, TLFA and our MBL) are clearly 

superior suggesting the generic benefits of more effective 

knowledge transfer from training classes to test classes. 
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Table 3 

Results of closed-world few-shot WF attack on AWF. ∗: Trained by our improved data sampling 

strategy. Metric: Accuracy. 

Method 1-shot 5-shot 10-shot 15-shot 20-shot 

CUMUL [12] 42 . 1 ± 5 . 5 72 . 2 ± 1 . 7 79 . 7 ± 1 . 4 83 . 3 ± 2 . 0 85 . 9 ± 0 . 6 

k-FP [11] 36 . 6 ± 1 . 6 79 . 3 ± 1 . 0 83 . 9 ± 1 . 0 85 . 9 ± 0 . 6 87 . 5 ± 0 . 8 

DF [15] � 10 � 10 � 10 37 . 3 ± 10 . 0 70 . 0 ± 4 . 4 

Var-CNN [16] � 10 17 . 9 ± 1 . 5 41 . 4 ± 4 . 0 65 . 6 ± 1 . 9 78 . 7 ± 1 . 5 

TF [17] 79 . 2 ± 1 . 3 92 . 2 ± 0 . 6 93 . 9 ± 0 . 2 94 . 4 ± 0 . 3 94 . 5 ± 0 . 2 

TF ∗ [17] 81 . 1 ± 0 92 . 6 ± 0 93 . 7 ± 0 94 . 5 ± 0 94 . 1 ± 0 

TLFA [19] 89 . 3 ± 0 97 . 3 ± 0 98 . 5 ± 0 98 . 6 ± 0 98 . 8 ± 0 

Var-CNN + HDA [18] � 10 59 . 7 ± 1 . 5 74 . 7 ± 2 . 6 86 . 4 ± 1 . 3 90 . 7 ± 0 . 8 

MBL 92 . 5 ± 0 97 . 2 ± 0 98 . 3 ± 0 97 . 9 ± 0 98 . 4 ± 0 

Fig. 3. Closed-world few-shot WF attack performance of TF ∗ , TLFA and MBL on the DS-19 dataset. Metric: Accuracy, F1 score, Precision and Recall. 
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3. Without knowledge transfer from other websites, data augmen- 

tation (HDA) is reasonably effective only when a good number 

of ( e.g. , 10+) training examples or shots are available. 

4. Our model MBL is consistently superior to all other competitors 

in the most difficult 1-shot case. For example, our MBL achieves 

an accuracy margin of 3.2% over the best previous competitor 

TLFA, and 50.4% over CUMUL (the best traditional WF attack 

method for the 1-shot setting). When more shots are given, 

our MBL is competitive with the state-of-the-art method TLFA, 

whilst outperforming all the other competitors by a large mar- 

gin. We stress that in many real-world applications, often only 

as few as one training sample is available and hence our MBL 

will be the best performer in those circumstances. 

5. The performance deviation of pre-training based methods (TF, 

TLFA, and our model MBL) are all the least, suggesting their 
strong stability. a

9 
We further compare our MLB with top-2 methods (TLFA and 

F ∗) on the DS-19 dataset in Fig. 3 . To complement Table 3 , we re-

ort the metrics of accuracy, F1 score, precision, and recall here. 

he main observations are that, (1) our MBL can now outperform 

oth competitors in most cases, and (2) TF turns out to be better 

han TFLA. This suggests that our model MBL has superior robust- 

ess across datasets. In contrast, the performance advantage of TF 

nd TLFA is inconsistent. Hence our method has generalization ad- 

antage to different applications. 

.5. Closed-world few-shot website fingerprint attack with time shift 

Setting. We evaluate the closed-world few-shot WF attack sce- 

ario with varying time gaps between training data collection and 

esting data collection. We compare our MBL with the state-of-the- 

rt TF [17] and TLFA [19] . Results. The comparative results in F1 
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Fig. 4. Closed-world few-shot WF attack performance of TF ∗ , TLFA and MBL over different train-test data time gaps (0–42 days). Dataset: AWF. Metric: F1 score. 
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to the reduction of parameters in meta-learning. 
core are shown in Fig. 4 . The comparisons in accuracy, precision 

nd recall are similar and hence omitted. We make the following 

bservations: 

1. Regardless of how large the time gap is, our model MBLsur- 

passes TF and TLFA consistently, with a visible margin for 1- 

shot cases across different day gaps. This suggests the consis- 

tent advantage of our MBL over varying data changes in time. 

2. The performance drop is generally linear with the time gap, but 

TF, TLFA and MBL are all reasonably stable in performance. This 

suggests a good generality of deep pre-training learning meth- 

ods. For instance, given a large 6-week time gap between train- 

ing data collection and test data collection, MBL can still cor- 

rectly deanonymize 96.7% out of 100 website visits. Interest- 

ingly, we also observe some improvements in cases of 3/10- 

days gap in comparison to the no-gap case. This may be caused 

by other co-occurring factors in data collection. 

3. When more shots are provided, our MBL closely matches the 

state-of-the-art TLFA, whilst significantly surpassing TF by a 

large margin. This is similar to the case of no time gap 

in Table 3 , suggesting the comparative stability among these 

methods. 

.6. Open-World few-shot website fingerprint attack 

Setting. We conduct the open-world WF attack experiment in 

 few-shot learning setting to test the more realistic performance 

f our model MBL. In each task, we randomly select 100 websites 
10 
rom AWF te as target (monitored) classes and those of AWFUM as 

on-target (unmonitored) classes. As discussed earlier, a few la- 

eled samples in support set are used to adapt the model. For the 

uery set, we select 15 samples from each target class and 9K- 

00K samples from AWFUM as distracting data typically encoun- 

ered in real-world use. We adopt the proposed AUC metrics to 

easure the performances of our MBL, TF [15] , and TLFA [19] . Re- 

ults. The comparative results are reported in Table 4 and Fig. 5 . 

e have the following observations. 

1. Our MBL outperforms TF consistently across all different shot 

cases and on both AUC metrics. Although there exist marginal 

disadvantages against TLFA in the 10/15/20-shot cases, our MBL 

is more robust because it always keeps high performance even 

when only one sample per website is available. However, both 

TF and TLFA collapse in the 1-shot case. This consistently sug- 

gests the performance and stability advantages of our Meta-Bias 

Learning idea. 

2. The results of AUC 

m is usually lower than that of AUC 

2 , as 

expected. This is because the former is a more strict metric 

requiring the model to predict the correct target class labels 

whereas the latter does not. 

3. All methods perform similarly across different size of unmoni- 

tored websites. This indicates their stability against the distract- 

ing classes in operation. 

4. MBL can better leverage fewer labeled training samples than TF 

and TLFA, suggesting higher data efficacy. This is potentially due 
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Table 4 

Results of open-world few-shot website fingerprint attack. Metrics: AUC based on binary-class (AUC 2 ) and multi-class (AUC m ) true positive rate and false 

positive rate. #unmonitored denotes the number of unmonitored websites. ∗: Trained by our improved data sampling strategy. 

#unmonitored Method 

1-shot 5-shot 10-shot 15-shot 20-shot 

AUC 2 AUC m AUC 2 AUC m AUC 2 AUC m AUC 2 AUC m AUC 2 AUC m 

9k TF ∗ [17] 0.500 0.005 0.927 0.888 0.940 0.901 0.945 0.911 0.947 0.913 

TLFA [19] 0.519 0.005 0.940 0.913 0.964 0.951 0.970 0.958 0.973 0.965 

MBL 0.895 0.840 0.950 0.934 0.958 0.946 0.960 0.950 0.962 0.952 

50k TF ∗ [17] 0.500 0.005 0.929 0.886 0.939 0.905 0.942 0.910 0.946 0.912 

TLFA [19] 0.540 0.005 0.943 0.917 0.968 0.953 0.974 0.963 0.976 0.968 

MBL 0.900 0.844 0.954 0.938 0.961 0.950 0.964 0.953 0.966 0.956 

100k TF ∗ [17] 0.500 0.005 0.924 0.882 0.936 0.897 0.941 0.908 0.943 0.910 

TLFA [19] 0.546 0.005 0.937 0.908 0.967 0.953 0.973 0.961 0.976 0.967 

MBL 0.901 0.846 0.955 0.939 0.961 0.950 0.965 0.954 0.965 0.956 

200k TF ∗ [17] 0.500 0.005 0.926 0.885 0.935 0.898 0.939 0.904 0.942 0.907 

TLFA [19] 0.545 0.005 0.944 0.918 0.968 0.954 0.972 0.959 0.976 0.967 

MBL 0.900 0.844 0.955 0.938 0.963 0.950 0.965 0.954 0.966 0.956 

400k TF ∗ [17] 0.500 0.005 0.924 0.883 0.929 0.888 0.932 0.892 0.940 0.902 

TLFA [19] 0.557 0.005 0.948 0.923 0.965 0.950 0.974 0.964 0.975 0.967 

MBL 0.904 0.846 0.956 0.940 0.963 0.950 0.965 0.954 0.966 0.956 

Fig. 5. Results of open-world few-shot website fingerprint attack. Metrics: AUC in binary-class (AUC 2 ) and multi-class (AUC m ). ∗: Trained by our improved data sampling 

strategy.. 
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.7. Few-shot website fingerprint attack against defense 

Setting. We further test a more challenging few-shot website 

ngerprint attack scenario with defenses involved in the closed- 

orld scenario. We consider two defenses: WTF-PAD [51] which is 
11 
he most popular defense in Tor, and FRONT [24] which is the lat- 

st zero-delay defense. The datasets DS-19 100,pad and DS-19 100,front 

re used for this experiment. We adopt the 10-way 1/2/3/4/5-shot 

est settings. We use the state-of-the-art TF [17] ) and TLFA [19] for 

omparison. Results. We report the results of closed-world WF at- 
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Fig. 6. Closed-world few-shot WF attack performance of TF ∗ , TLFA and MBL on the DS-19 dataset with the WTF-PAD defense. Metric: Accuracy, F1 score, precision and recall. 

Table 5 

Closed-world few-shot WF attack performance of TF ∗ , TFLA, MBL over the DS-19 dataset with the 

FRONT defense. Metric: Accuracy, F1 score, precision and recall. 

Metric Method 1-shot 2-shot 3-shot 4-shot 5-shot 

Accuracy TF ∗ [17] 66 . 0 ± 0 . 1 77 . 4 ± 0 80 . 3 ± 0 82 . 2 ± 0 80 . 8 ± 0 

TLFA [19] 69 . 1 ± 0 . 1 80 . 0 ± 0 83 . 5 ± 0 84 . 3 ± 0 87 . 2 ± 0 

MBL 80 . 5 ± 0 . 1 86 . 7 ± 0 87 . 8 ± 0 . 1 90 . 8 ± 0 93 . 0 ± 0 

F1 Score TF ∗ [17] 65 . 2 ± 0 . 1 76 . 9 ± 0 80 . 2 ± 0 82 . 0 ± 0 80 . 7 ± 0 

TLFA [19] 67 . 5 ± 0 . 1 79 . 4 ± 0 83 . 3 ± 0 84 . 2 ± 0 87 . 1 ± 0 

MBL 80 . 2 ± 0 . 1 86 . 3 ± 0 87 . 4 ± 0 . 1 90 . 7 ± 0 92 . 9 ± 0 

Precision TF ∗ [17] 67 . 7 ± 0 . 1 78 . 6 ± 0 81 . 6 ± 0 82 . 8 ± 0 81 . 9 ± 0 

TLFA [19] 71 . 4 ± 0 . 1 81 . 2 ± 0 85 . 6 ± 0 85 . 6 ± 0 88 . 4 ± 0 

MBL 83 . 4 ± 0 . 1 88 . 1 ± 0 89 . 6 ± 0 . 1 91 . 9 ± 0 93 . 9 ± 0 

Recall TF ∗ [17] 66 . 0 ± 0 . 1 77 . 4 ± 0 80 . 3 ± 0 82 . 2 ± 0 80 . 8 ± 0 

TLFA [19] 69 . 1 ± 0 . 1 79 . 9 ± 0 83 . 5 ± 0 84 . 3 ± 0 87 . 3 ± 0 

MBL 80 . 5 ± 0 . 1 86 . 7 ± 0 87 . 8 ± 0 . 1 90 . 8 ± 0 93 . 0 ± 0 

t

b

 

4

o

d

ack under WTF-PAD based defense in Fig. 6 , and under FRONT 

ased defense in Table 5 . We make the following observations. 

1. Under the WTF-PAD defense, the results in all the metrics (ac- 

curacy, F1 score, precision and recall) of every few-shot WF at- 

tack method decrease obviously, as compared to the no-defense 

case in Fig. 3 . However, it is important to note that our model

MBL now always performs well than its competitors in all the 

cases. 

2. Our model MBLperforms best, yielding a big margin of 12.7% 

over TLFA and 15% over TF in the most difficult 1-shot case with 

FRONT defense. Given more training samples (2/3/4/5-shots), 

the superiority of MBL remains with a margin of 5.8% over TLFA 
12 
and 12.2% over TF. This suggests that our method can generalize 

the advantages to more challenging test scenarios. 

3. Our model is also more robust against both defense cases. In 

comparison, TF and TLFA only perform reasonably well under 

one particular defense whilst suffering more from the other 

defense. This indicates that our method is more general with 

wider applicability. 

.8. Ablation study 

In this section, we investigate the impact of data augmentation 

n our model MBL. We consider two data augmentation methods 

uring training: random rotation and random mask, as introduced 
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Table 6 

Effect of data augmentation on closed-world few-shot WF attack performance. Dataset: DS-19. Metric: Accuracy, 

F1 score, Precision, and Recall. 

Metric Data Augmentation 1-shot 5-shot 10-shot 15-shot 20-shot 

Accuracy × 91 . 5 ± 0 94 . 4 ± 0 97 . 1 ± 0 98 . 3 ± 0 98 . 3 ± 0 

� 86 . 3 ± 0 . 1 91 . 7 ± 0 90 . 7 ± 0 . 1 93 . 4 ± 0 95 . 8 ± 0 

F1 Score × 91 . 1 ± 0 . 1 94 . 2 ± 0 97 . 1 ± 0 98 . 3 ± 0 98 . 4 ± 0 

� 85 . 5 ± 0 . 1 91 . 4 ± 0 90 . 3 ± 0 . 1 93 . 2 ± 0 95 . 8 ± 0 

Precision × 93 . 1 ± 0 . 1 95 . 2 ± 0 97 . 5 ± 0 98 . 5 ± 0 98 . 4 ± 0 

� 88 . 4 ± 0 . 1 92 . 6 ± 0 91 . 7 ± 0 . 1 93 . 8 ± 0 96 . 4 ± 0 

Recall × 91 . 5 ± 0 94 . 4 ± 0 97 . 1 ± 0 98 . 3 ± 0 98 . 3 ± 0 

� 86 . 3 ± 0 . 1 91 . 7 ± 0 90 . 7 ± 0 . 1 93 . 4 ± 0 95 . 8 ± 0 
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n HDA [18] . We apply the same optimized augmentation parame- 

ers. Specifically, we rotate the trace entirely forward or backward 

p to 20 steps, and mask out some sub-trace at a maximal length 

f 180 with zero. 

Setting. We conduct this test on DS-19. We use the classifi- 

ation accuracy, F1 score, precision and recall as the performance 

etrics. 

Results. The results are compared in Table 6 . We have the fol- 

owing observations: 

1. For all the metrics, MBL cannot benefit from the data augmen- 

tation. This is somewhat surprising. One plausible reason is that 

our Meta-Bias Learning is already sufficient to overcome the 

small training data challenge, and data perturbation may intro- 

duce some undesired and incompatible effects instead. 

2. Often, we see that data augmentation also enlarges the perfor- 

mance deviation, leading to less stable model generalization. 

This implies that meta-learning may require special data aug- 

mentation to be effective. 

. Conclusion 

In this work we have presented a novel Meta-Bias Learning 

MBL) method for few-shot website fingerprinting attack. Com- 

ared with the dominant supervised learning based WF attack 

ethods, few-shot learning based WF attack is a more practical 

seful yet under-studied problem. This removes the conventional, 

rtificial assumption on the availability of large training data for 

very target website. In practice only a handful of training samples 

er website can be feasibly collected given the high dynamics of 

nternet networks, frequent updates of websites, continual change 

f monitored sites and attack requirements over time. To that end, 

e explore the more advanced meta-learning approach in deep 

earning, a new research direction with vast potentials for scalable 

F attack. In contrast to the previous solutions, our meta-learning 

ethod is more scalable in model training in the sense of leverag- 

ng large-scale auxiliary datasets and more effective due to the ca- 

ability of optimizing the target task scenarios. More importantly, 

he proposed model factorization improves the efficacy of model 

upervised learning and meta-training. Consequently, it achieves 

ventually more discriminative model adaptation to new tasks. 

e conducted extensive experiments on two standard benchmark 

atasets to validate the efficacy of our MBL method in both closed- 

orld and open-world setting, with and without two represen- 

ative defenses. We also introduced more comprehensive evalu- 

tion metrics AUC 

2 /AUC 

m for open-world performance measure- 

ent. The results show that the proposed method outperforms 

he previous state-of-the-art alternatives in the more practical very 

ew-shot learning setting, often by a large margin. Limitations and 

uture work. One main limitation with our MBL is that it fails 

o achieve the best performance when multiple training samples 

shots) per website are available. In the future work we will inves- 

igate two promising directions. One is to combine meta-learning 
13
ith conventional supervised learning in order to enjoy their ad- 

antages spontaneously. The other is to develop novel data aug- 

entation methods that are particularly suitable for meta-learning 

ethods. We believe both of these studies will significantly ad- 

ance the progress of few-shot WF attack and make good impact 

o the community. 
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