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Abstract— Pedestrian detection is an important task in com-
puter vision, which is also an important part of intelligent
transportation systems. For privacy protection, thermal images
are widely used in pedestrian detection problems. However,
thermal pedestrian detection is challenging due to the significant
effect of temperature variation on the illumination of images
and that fine-grained illumination annotations are difficult to
be acquired. The existing methods have attempted to exploit
coarse-grained day/night labels, which however even hampers
the model performance. In this work, we introduce a novel
idea of regressing conditional thermal-visible feature distribution,
dubbed as Illumination Distribution-Aware adaptation (IDA). The
key idea is to predict the conditional visible feature distribution
given a thermal image, subject to their pre-computed joint
distribution. Specifically, we first estimate the thermal-visible
feature joint distribution by constructing feature co-occurrence
matrices, offering a conditional probability distribution for any
given thermal image. With this pairing information, we then
form a conditional probability distribution regression task for
model optimization. Critically, as a model agnostic strategy, this
allows the visible feature knowledge to be transferred to the
thermal counterpart implicitly for learning more discriminat-
ing feature representation. Experiment results show that our
method outperforms the prior art methods, which use extra
illumination annotations. Besides, as a plug-in, our method can
averagely reduce about 2% MR on KAIST dataset, and improve
about 1% mAP on FLIR-aligned and Autonomous Vehicles
datasets without extra calculation for test. Code is available at
https://github.com/HaMeow-Ist1/IDA.

Index Terms— Domain adaptation, feature co-occurrence, illu-
mination variation, thermal object detection.

I. INTRODUCTION

EDESTRIAN detection is an important problem
in computer vision [1], which plays an important
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role in autonomous driving, surveillance, and intelligent
transportation systems. Obviously, a good intelligent
transportation system requires a fast and high-precision
pedestrian detection algorithm. There are pedestrian detection
methods based on visible images [2]. But these detectors do
not work in the insufficient light (nighttime) or bad weather
(rain) cases. So multi-spectral pedestrian detection methods
emerge based on multiple sensors [3], [4], [5], [6], which
work very well. However, there exist some cases in which
only thermal imaging sensor exists, for example, privacy
concerns. So pedestrian detection based on only thermal
images has attracted many attentions.

There are three routes to realize pedestrian detection in
thermal image: direct reconstruction, visual knowledge adap-
tation, and illumination-aware. Direct reconstruction tries to
design a new network structure for better performance [7], [8],
or utilizes the imaging characteristics of thermal images [9],
[10]. For the first approach, the key to success is how to
extract features unique to thermal images, which itself is
sufficiently challenging because of insufficient details existing
in the thermal image; while for the latter approach, the
existing datasets always lack descriptions of image devices,
which makes it difficult to mine the special properties of
thermal images. Except the above mentioned approaches, for
data scarcity, data augmentation is also employed to improve
detection performance in thermal domain [11].

The second line of methods try to train the detector by
visual knowledge adaptation [12], [13], [14]. In this route, the
current methods can be roughly divided into two categories.
The first category is image adaptation [7], [14], [15]. Since
visible images generally have more information than thermal
images, a generator model is trained to transform thermal
images into visible images. However, this approach requires
high quality image generator which itself is also a very difficult
problem. Another category is feature adaptation [12], [13],
[16], [17], which aligns the distributions between visible and
thermal features such that detector network can extract visible
features. These methods try to extract the common features
between visible and thermal domains, but unique thermal
modal features are ignored.

The third line of methods use extra illumination annotations
to endow the detector with the ability of extracting discrimi-
nate features [18]. Different from other methods, this approach
uses extra illumination annotations, which denotes this image
is obtained at day or night. A hard-label classification auxiliary
task is employed such that the detector backbone can extract
more discriminate features. But illumination annotations are

1558-0016 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on August 25,2024 at 05:32:17 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-4760-8702
https://orcid.org/0000-0002-1200-5218
https://orcid.org/0000-0003-2635-1872
https://orcid.org/0000-0002-6716-0039

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

not always available. Furthermore, simply dividing the images
into day and night is not accurate, since thermal imaging is
affected by environment temperatures. As shown in Fig.1(a),
besides day and night samples, there are also some ambiguous
samples, which we define as mixed and indistinguishable day
and night samples. So the third route is reasonable but how to
design an appropriate auxiliary task is the key to success.

In this work, we propose a novel method, dubbed as Illumi-
nation Distribution-Aware adaptation (IDA). Instead of explicit
illumination annotations, given a thermal image the condi-
tional visible feature distribution is used as the auxiliary task
supervision soft-label signal, because day, night and ambigu-
ous thermal samples have different conditional distributions
respectively as shown in Fig.1(b). Specifically, our method
consists two parts. The first part is the Feature Co-occurrence
Matrices construction (FCM) module, the thermal-visible fea-
ture joint distribution is constructed which is approximated
by feature co-occurrence matrices by calculating and counting
the thermal-visible feature for each thermal-visible image pair.
Another part is the Visible Knowledge Adaptation (VKA)
module. For each thermal image, the corresponding visible
feature distribution is obtained by querying the feature co-
occurrence matrices. Then this distribution is used to as a
supervision signal to train an auxiliary task which endows the
detector network with the ability of learning more discriminate
features and implicitly extracting visible knowledge.

Our contributions can be summarized as follows: (1) We
analyze the shortcoming of illumination-aware methods, which
need illumination annotations and ignore ambiguous samples.
(2) An illumination distribution-aware adaptation strategy is
proposed for thermal pedestrian detection. Instead of using
explicit day and night annotations, a conditional visible feature
distribution regression scheme is proposed. (3) Our methods
can be used in many detectors as a plug-in to improve
performance.

II. RELATED WORKS
A. Pedestrian Detection in Visible Images

Recent advances promoted the development of visible
pedestrian detection because visible images have rich informa-
tion such as color and clear outline. Methods are roughly clas-
sified into five strategies. The first one is based on handcrafted
features, such as AKBING [19], Zhao et al. [20], DMP [21]
and Shen et al. [22]. The second one uses CNN for detection,
such as PAMS-FCN [23], CompACT [24], and MCF [25].
They modify the classic object detection model for pedestrian
detection. The third one uses attention for detection, such as
GDEFL [26] and MDFL [27]. These methods add extra attention
modules for better feature extraction. The fourth one is occlu-
sion processing. These methods aim to detect occluded persons
for better performance, such as MGAN [2], SA-DPM [28] and
Zhang et al. [29]. The final one is domain adaptation, which
uses thermal images to auxiliary train a detector for visible
pedestrian detection, such as CMT-CNN [30].

B. Pedestrian Detection in Multispectral Images

Since visible and thermal images have complementary
information, many multispectral pedestrian detection methods
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Fig. 1. Comparison between previous illumination-aware approach and our
method. (a) An auxiliary task is designed to help the detector network extract
discriminate features which simply classifies the image as day or night at
training stage. (b) Our method endows detection network with the ability
of extracting more discriminate features and implicit visible knowledge by
designing an auxiliary network regressing a conditional distribution.

emerge. The first approach is based on feature fusion, which
uses convolution neural networks to combine both visible
and thermal features [31], [32] or attention mechanism for
feature fusion [3], [33], [34]. The second route is based on
illumination-aware module which addresses modality imbal-
ance problems because different illumination conditions can
affect the feature distribution of visible and thermal images [4],
[35], [36], [36], [37]. They use an extra network to predict
whether the image was taken during the day or at night,
then add different weights for thermal and visible features
according to the predictions.

C. Pedestrian Detection in Thermal Images

Due to insufficient light (nighttime) or bad weather (rain),
many methods focus on pedestrian detection in thermal
images. As mentioned earlier, thermal pedestrian detection
methods have three strategies. The first one is direct recon-
struction. For example, GPCAnet [9] is designed to predict
the pedestrian position via an additional task. Kim et al. [10]
proposed a memory network to transform low-scale features
into large-scale features. Bongini et al. [11] proposed a novel
data augmentation approach compositing 3d fake thermal
objects in a real thermal scene. The second strategy is visible
knowledge adaptation. For image adaptation, Guo et al. [15]
used CycleGAN to generate visible images for detection from
thermal images. While for feature adaptation, Kim et al. [38]
proposed a memory network to transform thermal features
into visible features. The final strategy is illumination-aware
such as TC Thermal [18] and TC Det [18]. They use an extra
network to predict whether the image is taken at the day or
night, then use the auxiliary network features to guide the
detector to extract more discriminate features.

D. Co-Occurrence Learning

Co-occurrence learning aims to count the number of
co-occurrence between different elements as co-occurrence
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Overview of the proposed IDA method. The black, green, and blue lines indicate the initialization, training, and testing flow respectively. (a) The

feature co-occurrence matrices construction module is used to approximate the thermal-visible joint feature distribution. (b) Visible knowledge adaptation
module endows detector with the ability of learning more discriminate features and implicitly extracting visible knowledge.

frequency for analysis. The existing methods for computer
vision can be roughly classified into two categories. The
first category is handcrafted based method, which counts
co-occurrence frequency between different position pixel val-
ues as features in an image or a region for downstream tasks,
for example, CoF [39] for background blurring and image
recoloring, CoTM [40] for template matching, and COS [41]
for mining consistent feature correspondences. Another cat-
egory is based on deep learning framework which counts
feature co-occurrence frequency of different channels in an
image as an attention map for feature augment, such as
CoL [42] for image classification and semantic pixel labeling,
CoCNN [43] for recommendation and COOC [44] for object
recognition. The existing approaches count co-occurrence
frequency between different parts in one sample or in one
domain. Instead of previous approaches, our method counts
feature co-occurrence frequency between the thermal and
visible domains, which is used as a bridge to connect the
thermal and visible knowledge.

III. THE PROPOSED METHOD
A. Problem Statement

Let Dy, = {(XX i xSTJ., ys,,-)}fvzs1 denotes the training dataset.
xs‘fi € RY*"*¢ i the i-th visible image, and xsT’i € Rwxhixc
is the corresponding i-th paired thermal image, where w, h
and c are the width, height and channel number respectively.
¥s.i denotes the object annotations of the i-th paired visible-
thermal images. N denotes the total number of thermal-visible
image pairs in training set. Suppose the test dataset Dy
] j}évél, where x/; € R¥*"x¢ and N, denotes the total
number of test thermal images. Our goal is to construct an

auxiliary task to endow the detector network with the ability
of extracting discriminate features and visible knowledge by
using the paired thermal-visible image pairs at train stage such
that it can obtain better performance at test stage than that only
trained based on the thermal images.

1) Overview: The proposed thermal pedestrian detection
method is based on illumination distribution-aware adaptation
(IDA) which consists of two parts. As shown in Fig.2, one
is the Feature Co-occurrence Matrices construction (FCM)
module; another one is Visible Knowledge Adaptation (VKA)
module. The detector baseline in Fig.2 can be one-stage
detector such as YOLOvV3 [45] or two-stage detector such
as Faster RCNN [46]. FCM module (Fig.2(a)) first uses the
pre-trained and freezen backbone to extract the features of
each pair of thermal-visible images. Then they are reduced
to the paired thermal-visible feature vectors. In the end, these
thermal-visible feature vectors are used to create feature co-
occurrence matrices, which are used to approximate a joint
thermal-visible feature distribution.

After the initialization of feature co-occurrence matrices,
VKA module uses them as a supervision signal for an
auxiliary task. For each thermal image, by querying the
feature co-occurrence matrices, a Gaussian distribution is used
to approximate the conditional visible feature distribution.
Specifically, the queried samples are used to calculate a mean
vector and a variance vector. The auxiliary task is designed to
predict the mean and variance vectors. In this way, the detector
backbone can extract the discriminate features to distinguish
the day, night, and ambiguous image samples. Meanwhile,
through the alignment with visible feature distribution, the
detector also implicitly obtains the ability of extracting the
corresponding visible knowledge.
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B. Feature Co-Occurrence Matrices Construction

In this section, the aim is to obtain the conditional visi-
ble feature distribution given a thermal image. Before this,
we need to acquire the joint distribution between thermal and
visible features. Here we use feature co-occurrence matrices
to represent this joint distribution. After normalization and
quantification, the continuous feature values are discretized
into multiple ranges. The problem of distribution computation
is approximated by counting the co-occurrences of thermal-
visible features contained in each range.

Based on the above idea, first all of the visible and thermal
images in the training set are used to train a visible detector
and a thermal detector respectively. Then the corresponding
thermal and visible feature extraction backbones ¢>T and ¢v
are frozen. For each pair of thermal and visible images, the
corresponding features ET, fiv e RWXH*C can be obtained

as follows,
T'=¢r(x]). (1)
FY =¢v(x). 2)
where x ; and x ; denote the i-th thermal and visible images

respectlvely. or and ¢y are the corresponding trained thermal
and visible backbones. W, H and C denote the width, height
and channel number of feature tensor respectively.

For simplicity, the feature tensor is further reduced to a
feature vector. Specifically, the feature tensor is divided into
K parts according to the channel dimension. The feature vector
is calculated as follows,

K (Cx(j+D))/K—-1
~V/T . =V/T
S S T R

WxHXxC )
mn p=(Cxj)/K

[m,n, pl,

3)

where I::iv/ T[m, n, p] denotes the (m, n, p) coordinate value
of Fl.V/T with the size W x H x C. 7,7/ e RX. [ j] denotes
the j-th element of a vector z for j = 1, , K. Then the
vectors Ziv / T[ j] are normalized to ensure that the element
value is between 0 to 1 for j = 1, , K. They are written
as follows,

VT, . Z-V/T

AT L] — min(z;" m},_1

]

, 4
max{ZI.V mm{z ]]}?ﬁl @
where fiT and flV denote the i-th normalized thermal and
visible feature vectors respectively. min{-} and max{-} denotes
the corresponding minimum and maximum values. Based on
this computation, the joint thermal-visible feature distribution
is approximated by K two-dimensional random variables

LFTL) fYL for j=1,--- K.

Then the feature value is d1scretized into N ranges. The
discrete random variable has N possible values (0,1, --- , N—
1)/N. In this way, the joint features fiT[j] and f;v[j] are
quantified to N x N parts. Correspondingly, the quantified
two-dimensional discrete random variables [ f U jl, f VI Jj1l
has N x N possible values. As shown in Fig.3(a), this
joint distribution is approximated by a feature co-occurrence
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Fig. 3. Tllustration of constructing and using feature co-occurrence matrices.
(n) denotes this part is related to formula (n).

matrix constructed by counting the co-occurrence frequen-
cies. Totally, K matrices are computed to approximate the
whole joint distribution. Specifically, the feature co-occurrence
matrix A; € RNXN for the j-th part is

Ny

"=e+ > LU [j1=m) 1AV [j1=n). ()
i=1

where 1(-) equals 1 if the value inside the bracket is true

and O otherwise. Il.T [j] and Il.V [j] denote the j-th quantized

indexes respect to the i-th thermal and visible images, which

are calculated as

=T/V

=TV . .
T/V L Ul x NI, f [J]< 1,
U= v AMVE ©

where |-| denotes the round down operation. Here, for avoid-
ing the case of zero values of a certain row such that the
conditional distribution can not be calculated, a small positive
parameter ¢ is set as 1.0 x 1079,

The feature co-occurrence matrices A record the frequency
relationship between different thermal-visible feature values.
Since we aim to predict the conditional visible feature dis-
tribution, the feature co-occurrence matrices are row-wise
normalized as shown in Fig.3(b), which are written as

m,n AT’” (
M = 7)
’ P A;n’l

for j = 1,---,K. We call them conditional feature co-
occurrence matrices. For every row, the sum of all values is 1,
which can be regarded as a discrete random variable whose
values are from (0,---, N — 1)/N. Each discrete random
variable is used to approximate a Gaussian distribution to
supervise an auxiliary task.

Remark: The features are always high dimensional.
So K matrices are constructed to approximate the joint
thermal-visible feature distribution. Besides, since the channel
of the feature is usually an integer power of 2 such as 1024 or
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2048, the value of K is also set as an integer power of 2 such
as 16, 32, or 64. If the value of K is high, the distribution
is more completely approximated but more storage space is
needed and the conditional distribution vectors are difficult
to be predicted. On the other hand, if the value of K is low,
although less space is required and the conditional distribution
vectors are easy to be predicted, the joint distribution can not
be fine approximated. Similarly, the discretization slot number
N obeys the same phenomena.

C. Visible Knowledge Adaptation

After creating conditional feature co-occurrence matrices,
we can obtain the corresponding visible feature distribution
given a thermal feature. Without the loss of generality, given
a thermal image, suppose that the conditional visible feature
obeys Gaussian distribution, an auxiliary task is constructed
to predict the mean and variance vectors instead of specific
distribution. In this way, the detector backbone can extract
more discriminate features and implicitly align the thermal
domain with the visible domain.

For the i-th thermal image, the corresponding quantified
features are fiT[j] for j = 1,---, K. The feature fiT[j]
corresponds to the visible feature row IZ.T[ j] of the j-th
conditional feature co-occurrence distribution matrix as shown
in Fig.3(b). Suppose the elements of this row are sampled
from a Gaussian distribution, then the corresponding mean
and variance can be calculated as follows,

N—-1 1T n
. ; NG
VA VIED IR ®)
n=0

N-1
S = =0 + X M ()
n=0
for j =1,---, K, where y"**" and yl?)‘” denote the mean and
variance vectors of the visible features corresponding to the
i-th thermal image respectively.

Then an auxiliary network is proposed named Distribution
Regression Net (DRNet) to predict the above computed mean
and variance vectors. The input of DRNet is the feature map of
the ith thermal image xST’i, which can be presented as follows,

Fl' =¢r(x]),

where ¢7 denotes the detector backbone to be learned. The
outputs of DRNet are two K-length vectors, which are the
predictions of mean and variance vectors respectively. DRNet
contains two parts. The first part consists of a convolution layer
shaping channel number to 256, a ReLU activation function
and a MaxPool layer reshaping feature maps to quarters, which
can be denoted as

(10)

i =MaxPooloReLUoConv1X1(FiT). (11D

The effect of the first part is to reduce the feature dimension-
ality to simplify calculations. Next, we resize ¢; to a vector ¢/
and use two MLPs networks to regress the mean and variance
vectors as the following,

)A}imean — MLPl((p;k), )A]ivar = MLPz((ﬂi*), (12)

where $7'¢“" and " denote the predictions of mean and

variance vectors respectively. Here, MLP network consists of
four parts: A linear layer shaping the vector length to 256,
a ReLU activation function, a dropout layer with probability
of p = 0.5, and an another linear layer.

The auxiliary task is to minimize the difference between the
predictions and ground truth of the mean and variance vectors
to train the backbone ¢ such that it can extract discriminate
features and also implicitly align the thermal domain to the
visible domain. The distribution regression loss is defined as

Lpr = 3" = 3" 2 + Al — ¥/ 2. (13)

The whole network is trained end-to-end. The total loss is
defined as

Liotai = Lop + Lpg, (14)

where Lop is the standard detection loss of any detector such
as YOLO and Faster-CNN. The hyper-parameters A,, and A,
are two balance factors. To better illustrate our method, the
pseudocode is shown as Algorithm 1.

Remark: Based on our conditional feature co-occurrence
matrices, different thermal images correspond to different rows
of matrices, so the mean and variance vectors of day, night,
and ambiguous samples are different. Therefore, day, night,
and ambiguous samples can be distinguished by predicting
different mean and variance vectors. Thus, the discriminate
features can be extracted. Furthermore, by predicting the mean
and variance vectors of the corresponding visible features,
our auxiliary task can also help the detector backbone extract
visible knowledge implicitly. At test phase, the auxiliary task
is not needed any more. So our model can be used as a plug-in
to any detector backbones. Experimental results also confirm
our strategy works. Moreover, our method generalizes over
different illumination and temperature scenarios, as our model
design does not assume any specific conditions of these fac-
tors. The feature co-occurrence matrices can directly capture
the changes in illumination and temperatures as encoded in
the training data.

IV. EXPERIMENTS

Datasets: Our experiments are conducted on the KAIST
dataset, FLIR-aligned dataset, and Autonomous Vehicles
dataset. (1) The KAIST dataset consists of 59328 thermal-
visible image pairs for training and 45156 image pairs for
test. As is common practice [47], [48], [49], [50], we sample
every two frames from training videos and exclude heavily
occluded and small person instances (< 50 pixels). Mean-
while, we use the training annotations from [49] and test
annotations from [50]. The final dataset consists 7601 thermal-
visible image pairs for training and 2252 image pairs for test.
(2) To verify the generalization of our method, we also use the
FLIR-aligned dataset [51] for evaluation. This dataset contains
4129 visible-thermal image pairs for training and 1013 pairs
for test on three categories (person, bicycle, and car). Only
thermal images are used for test. To confirm the extention to
complex scenarios, Autonomous Vehicles dataset [52] is used
which contains five categories: bike, car, car_stop, color_cone,

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on August 25,2024 at 05:32:17 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Algorithm 1 Algorithm With IDA for Training

Input: Pre-trained visible backbone av, pre-trained thermal
backbone djr, backbone ¢, detector head D, DRNet
Fppr, paired visible-thermal images and annotations
D; = {(sti’ xsT’i’ ys,i)}lN:S]-
Output: backbone ¢r, detector head D.
// collect feature tensors
Calculate each visible-thermal image pair’s feature tensor by
formulas (1) and (2);
// reduce dimension
Calculate each visible-thermal image pair’s feature vector by
formula (3);
// normalization
Normalize each visible-thermal image pair’s feature vector by
formula (4);
for j=1:K do
// init a N x N matrix with €
Aj < Init_Matrix(N x N, €);
// calculate the feature co-occurrence
matrix
fori=1:N, do
1T < max(int (f1[j1 x N), N — 1);
1V < max(int(f[j1 x N), N — 1);
A;'.”’ <~ A';"" + 1.0;
end
Calculate the M by formula (7);
// calculate the ground truth of
mean-var vectors
yreanj] < 0.0,
Y] < 0.0
fori =1: N, do
forn=0:N—1do

T .
Py e el g

. . 1111,
VLT < 3+ M )%

end
YHLG] < YRl = (rmeen i
end
end

for k = 1: epochs do

fori=1:N, do

Fl < ¢r(x]);

// predict the mean-var vectors
ylmeun’ ylvur < FDR(F,'T)

Calculate the loss by formula (13);

y < D(F);

Calculate the total loss by formula (14);
Update the network;

end
end

and person. We use the RGB images as visible images,
and FIR images as thermal images. This dataset contains
6009 paired images for training and 1503 for test.
Evaluation Metric: (1) For the KAIST dataset, we follow
the setting in the works [47], [48]. The evaluation metric is
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the log-average miss rate (MR) for thresholds in the range of
[10_2, 100]. We set 0.5 as the Intersection over Union (IoU)
threshold to calculate True Positives (TP), False Positives
(FP), and False Negatives (FN). We also include floating-point
operations per second (FLOPS) and the number of parameters
(Param) in the evaluation metrics. (2) For the FLIR-aligned
dataset, models are evaluated with mean Average Precision
(mAP), mAP50, and mAP75. Note that mAP50/mAP75 means
the IOU value is 0.5/0.75. Besides, mAP means we calculate
the average of 10 results with IOU as [0.5, 0.55, 0.6, 0.65,
0.7, 0.75, 0.8, 0.85, 0.9, 0.95].

Implementation Details: The networks are pre-trained on
the COCO dataset. We set our method as a plug-in com-
bined with YOLOv3 [45], Faster RCNN [46], and Cascade
RCNN [53]. This is because YOLOv3 is the most common
single-stage detector for thermal pedestrian detection. Besides,
FasterRCNN and CascadeRCNN are great two-stage detectors.
The input image size is 640 x 512. For these three models,
MMDetection is used [54]. (1) For YOLOv3, the batch size is
set as 4. We choose Darknet53 for the backbone. The hyper-
parameters K and N are set as 32 and 40 respectively. A, is
200.0. Besides, A, is 75.0 on the KAIST dataset and 100.0 on
the FLIR-aligned dataset. (2) For Faster RCNN and Cascade
RCNN, the backbone is Resnet50 [55]. The epoch number is
4. SGD is used to train the detector with an initial learning
rate as 0.005 for the first three epochs and 0.005 for the last
epoch. The baseline is Feature Pyramid Network (FPN) [56].
The batch size is 4. K and N are set as 32 and 40. For
FasterRCNN, A,, is 0.1 and A, is 0.125. For CascadeRCNN,
Am is 0.1 and X, is 0.2. On the FLIR-aligned dataset, the
parameter setting is almost the same. K and N are set as
16 and 40 for CascadeRCNN. For YOLOX on FLIR-aligned
dataset, K and N are 32 and 40, respectively. A,, is 10.0 and
Ay is 20.0. We use SGD with learning rate as 5.0 x 107>,

A. Comparisons to State-of-the-Arts

1) Compared Methods: On KAIST dataset, we choose three
categories of methods for comparison whose codes are public
available. The first category is the direct reconstruction which
is based on single thermal domain such as TPIHOG [57],
FasterRCNN-T [50], and Ghose et al. [8]. The second category
is visual knowledge adaptation such as SSD300 [7], VGG16-
two-stage [15], ResNetl01-two-stage [15], Bottom-up [13],
Top-down [13], Mixed 40_60 [14], Mixed 80_20 [14], Mixed
90_10 [14], Xie et al. [17], and DIP [58]. The third category is
illumination-aware approach such as TC Thermal [18] and TC
Det [18]. We implement our method IDA based on the detec-
tion frameworks YOLOV3, FasterRCNN, and CascadeRCNN.
The detection results of the compared methods are from the
corresponding papers. For FLIR-aligned dataset, we compare
our methods with YOLOv3(Xie et al.) [17], DIP [58], and
TIRDet [59]. All these methods use paired visible-thermal
images for training. Besides, to explore the generation capa-
bility of our method, we also choose Autonomous Vehicles
dataset for the experiment. Compared with the KAIST and
FLIR-aligned datasets, the scenario of this dataset is more
complex. On Autonomous Vehicles dataset, we compare our

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on August 25,2024 at 05:32:17 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ILLUMINATION DISTRIBUTION-AWARE THERMAL PEDESTRIAN DETECTION 7

TABLE I

COMPARISONS ON THE KAIST DATASET AT DAY AND NIGHT IN TERMS OF MR. FLOPS AND PARAM ARE ALSO USED
FOR COMPARISON. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Method All} Day] Night] FLOPS| Param]
TPIHOG [57] - - 5738 - -
FasterRCNN-T [50] 4759 50.13 4093  280.514"  49.007"
Ghose et al. [8] - 3040 21.00  328.7557  192.845'
SSD300 [7] 69.81 - - 30.428" 23.7457
VGG16-two-stage [15] 4630 5337 31.63  157.304"  191.1031
ResNet101-two-stage [15] 4265 4959 2670  289.5867 101.681%
Bottom-up [13] 3520 40.00 2050  62.103*  61.524"
Top-down [13] 3630 4230 2040  62.103*  61.524*
Mixed 40_60 [14] 3478 4345 1453 745207 110.047F
Mixed 80_20 [14] 2588 33.01 11.12  74.520" 110.047t
Mixed 90_10 [14] 25.62 31.86 1292 745207  110.047F
YOLOv3(Xie et al.) [17] 2349 30.11 9.64 2725757 114.500"
DIP [58] 19.12 2516 7.49 156.040*  59.090*
TC Thermal [18] 2853 3659 11.03  62.105°  63.659
TC Det [18] 27.11 3481 1031  62.105*  63.659*
YOLOv3 + IDA (Ours) 2253 2846 9.27 62.030 61.520
FasterRCNN + IDA (Ours) 18.88 2497 6.61 75.580 41.120
CascadeRCNN + IDA (Ours) 18.93 25.63 5.86 103.390 68.930
method with YOLOv3, FasterRCNN, and CascadeRCNN as TABLE II

shown in Table III. Note that in the table the symbol x
indicates that the method is open-source. We use the official
code to calculate the FLOPS and Param. The symbol
denotes the method is not open-source; for these methods,
we reproduced the codes closest to the results reported in their
papers. Their FLOPS and Param are calculated based on the
reproduced codes.

2) Quantitative Comparisons: From Table I, by adding our
method as a plug-in to YOLOv3, FasterRCNN and CascadeR-
CNN, all three detectors get good performance. Interestingly,
comparing TC Det [18] to YOLOv3 + IDA (Ours), our method
gets better performance in the day, —2.40% from 34.81%
to 32.41% vs —0.04% from 10.31% to 10.27% at night.
This is because our method implicitly aligns the extracted
features with the conditional visible feature distribution. Vis-
ible features in the day are richer than those at night and
thermal features in the day are also not informative. So the
performance is boosted much in the day. This proves that
our method has the ability to obtain the visible features.
Moreover, as a plug-in, our method is lightweight without
extra networks and calculations for test. However, other one-
stage-based methods need extra networks to transform thermal
features into visible features. This leads to much computations
because of large size of feature maps. In some two-stage-
based methods, a network is proposed to transform thermal
ROI features into visible ROI features. This also leads to
computation burden because of many ROIs.

The quantitative comparisons on the FLIR-aligned dataset
are shown in Table II. With our method as a plug-in, we can
improve mAP 42.1% for YOLOv3, +1.4% for FasterRCNN,
and +0.6% for CascadeRCNN. This demonstrates the gen-
eralization ability of our method across different datasets. In
addition, as shown in Table III, our method can also be applied
to more complex scenario, i.e. Autonomous Vehicles dataset.
Detection performance is improved.

COMPARISONS ON FLIR-ALIGNED DATASET WITH PERSON, BICYCLE,
AND CAR. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Method mAP mAP50 mAP75
Xie et al. [17] - 76.38 -

DIP [58] - 77.28 -
TIRDet [59] 443 814 41.1
YOLOvV3 + IDA (Ours) 37.5 75.0 30.3
FasterRCNN + IDA (Ours) 40.3 754 35.8
CascadeRCNN + IDA (Ours) 41.6  76.2 36.7
YOLOX + IDA (Ours) 46.3 81.1 43.4

TABLE III

COMPARISONS ON AUTONOMOUS VEHICLES DATASET. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD

Method mAP  mAP50 mAP75
YOLOv3 346 719 29.9
FasterRCNN 399 725 39.8
CascadeRCNN 422 729 42.7
YOLOv3 + IDA (Ours) 357  73.0 30.8
FasterRCNN + IDA (Ours) 41.0 73.0 40.6
CascadeRCNN + IDA (Ours) 43.1  73.1 43.8

In conclusion, (1) compared with the direct reconstruction
based methods, our methods get better performance because
our methods use the visible knowledge to train the detec-
tor. For each thermal image, the backbone can also extract
some visible features for better performance because of our
additional auxiliary task. (2) For visual knowledge adaptation
methods which predicts the visible features, our methods
also obtain better performance by predicting conditional vis-
ible distribution. This is because these visual knowledge
adaptation methods only learn the knowledge of a specific
visible image corresponding to the paired thermal image,
however, our method implicitly learns more similar visible
samples by regressing visible feature distribution. Meanwhile,
we choose to predict the conditional visible distribution instead
of searching the visible features for fusion. This is because
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Fig. 4. Pedestrian detection results on the KAIST dataset. The first, second and third columns are the results of YOLOv3, TC Det and YOLOv3+IDA (Ours)
respectively. Blue, green and red boxes denote the true positive detections, false negatives, and false positives, respectively. The first, second and third rows
are results of day, night and ambiguous samples respectively. Images are cropped to save space when displayed here.

prediciting full dimensional features is hard and needs much
computation. (3) Furthermore, our method gets better perfor-
mance than the state-of-the-art illumination-aware methods.
Because our method can distinguish day, night, and ambiguous
samples, more discriminate features and visible knowledge are
extracted. Other methods try to distinguish ambiguous samples
as day or night, which leads to bad performance.

3) Visualization Comparison: We print the prediction
results and annotations on some images and save them
for visual comparison with those open-source methods. The
method YOLOv3 + IDA (Ours) is compared with YOLOv3
and TC Det on the KAIST dataset. As shown in Fig.4, our
method can reduce false positive predictions and improve true
positive predictions for day, night, and ambiguous samples.
All of the visual results confirm that the detector with our
proposed plug-in can get better performance.

B. Further Studies on YOLOv3+IDA

In this section, we give further studies of our method based
on YOLOv3 backbone.

TABLE IV

ABLATION STUDY OF YOLOV3 ON KAIST (LEFT) AND FLIR-ALIGNED
(RIGHT) DATASETS. M AND V DENOTE WHETHER THE METHOD PRE-
DICTS MEAN AND VARIANCE VECTORS RESPECTIVELY

M V | Al Day Night | mAP mAP50 mAP75
X X | 25.04 3189 1045 | 354 714 29.9
v x| 2422 3054 1036 | 355 75.7 272
X v | 2448 32.06 9.48 364 742 31.5
v v | 2253 2846 9.27 375 750 30.3

1) Ablation Studies: To explore the effectiveness of the
components of our method, we conduct an ablation study
on the KAIST dataset and FLIR-aligned dataset. On the
KAIST dataset, as shown in Table IV, compared with the
baseline YOLOV3, our method reduces the MR by —2.51%
from 25.04% to 22.53%. Only predicting mean vector or
variance vector will reduce —0.82% from 25.04% to 24.22%
or —0.56% from 25.04% to 24.48% respectively. Predicting
both mean and variance vectors improves performance better
because using both mean and variance can accurately describe
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Feature distribution of thermal and visible images. Red, green and blue points denote the day, night and ambiguous samples respectively. Note that

blue points are red and green points mixed together and can be regarded as ambiguous samples. We draw them blue for distinguishing.

TABLE V

DETECTION RESULTS (MR) OF YOLOV3+IDA WITH VARYING K AND N
ON KAIST DATASET

TABLE VI

DETECTION RESULTS (MAP) OF YOLOV3+IDA WITH VARYING K AND
N ON FLIR-ALIGNED DATASET

K Al Day  Night | N Al Day  Night K  mAP mAP50 mAP7/5 | N mAP mAP50 mAP75
3 2448 31.00 10.56 | 10 2495 31.86 11.01 8 346 738 27.0 10 332 704 254
16 2390 3078 9.68 |25 2392 3020 11.61 16 325 702 26.4 25 346 739 27.4
32 2253 2846 9.27 | 40 22,53 2846 9.27 32 375 750 30.3 40 375 75.0 30.3
64 2392 30.87 934 |55 2363 3032 1048 64 354 752 277 55 338 731 263
128 2465 3198 968 | 70 2325 3028 9.95 128 356 758 27.1 70 367 75.0 29.0

a Gaussian distribution. Similarly results can be obtained based
on mAP on the FLIR-aligned dataset.

2) Length of the Mean and Variance Vector: On the KAIST
dataset, to explore the effectiveness of the length of mean and
variance vectors, we let the value of K be 8, 16, 32, 64 and
128 respectively. As shown in Table V, the detector performs
best when K = 32. The low value of K means that the infor-
mation losses more in the process of feature dimensionality
reduction; while if the value of K is high, predicting high
dimensional mean and variance vectors will be difficult, which
also leads to bad performance. So we choose K = 32. On the
FLIR-aligned dataset, as shown in Table VI, the same result
happens. It shows the setting of K is stable across different
datasets.

3) Size of the Conditional Feature Co-Occurrence Matrix:
On the KAIST dataset, to explore the effectiveness of the size
of the conditional feature co-occurrence matrix, we let the
value of N be 10, 25, 40, 55 and 70 respectively. As shown in
Table V, the detector performs best when N = 40. The low
value of N leads to the matrices cannot accurately represent
the joint Gaussian distribution, because two values with large
difference may be quantized into a same interval. The high
value of N leads to the matrices being sparse. Since the total
number of samples is a constant number Ny, too few samples
will be allocated to each matrix row. So frequency cannot
approximate a probability anymore. Similarly as the parameter
K, the same thing applies to FLIR-aligned dataset as shown
in Table VI.

4) Parameter Sensitivity Analysis: The parameter sensi-
tive analysis of A, and A, in Eq.(13) is performed on
the KAIST dataset based on the method YOLOv3+IDA.
The value of A,, is selected as 25.0, 50.0,75.0, 100.0 and
125.0 when X, = 200.0. Similarly, A, is selected as
100.0, 150.0, 200.0,250.0 and 300.0 when A, = 75.0.

Sensitivity analysis of Ap, Sensitivity analysis of A,
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Fig. 6.
dataset.

Hyperparameter sensitive analysis of A, and A, on the KAIST

As shown in Fig.6, the performance is the best when A, =
75.0 and X, = 200.0. Meanwhile, our model can keep a
relatively stable result in a wide value range respect to A,
and A,. The low value of A,, and A, means that the detec-
tor cannot accurately distinguish day, night, and ambiguous
samples without using the conditional probability distribu-
tion regression task; while the high value of A, and A,
leads to bad performance because of insufficient constrain
on detection loss Lpp. It can also be observed that our
method can achieve better improvements in the day. This
further proves that our method can effectively obtain the
visible features to compensate the information loss in thermal
features. Similarly on the FLIR-aligned dataset, we let the
value of A,, be 50.0,75.0, 100.0, 125.0 and 150.0, and A, be
100.0, 150.0, 200.0, 250.0 and 300.0, respectively. As shown
in Table 7, the detector performs best when %,, = 100.0 and
Ay = 200.0.

5) Visualization of Feature Distribution: In this part, based
on the KAIST dataset, more visualization results based on
YOLOvV3+IDA are shown here. For the i-th thermal-visible
image pair in the training dataset, we calculate the normalized
feature vectors f;T / V, which are K-length vectors. For j =
1,---, K, we denote by a point at coordinates (fiT[j], j?l.v[j])
for each sample in the training dataset. Here, we get K
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Fig. 7. Hyperparameter sensitive analysis of A;; and A, on the FLIR-aligned

dataset.

ABLATION STUDY OF FASTERRCNN oON KAIST

TABLE VII

(LEFT) AND

FLIR-ALIGNED (RIGHT) DATASETS. M AND V DENOTE WHETHER
THE METHOD PREDICTS MEAN AND VARIANCE
VECTORS RESPECTIVELY

M V | Al Day Night | mAP mAP50 mAP75
X x| 21.07 2683 856 389 743 343
v x| 2006 2644 691 399 755 358
x v | 20.86 2688 7.67 40.0 753 35.9
v v | 1888 2497 6.61 403 754 35.8

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE VIII

DETECTION RESULTS (MR) OF FASTERRCNN WITH VARYING K AND N

ON KAIST DATASET

K All Day Night | N All Day Night

8 20.58 26.33  9.50 10 19.83 25.06 8.55

16  20.84 27.13 8.13 25 21.08 26.71 9.45

32 18.88 24.97 6.61 40 18.88 2497 6.61

64  21.03 26.86 8.48 55 1979 25.82 8.17

128 21.05 27.03 9.27 70 21.27 27.55 8.60
TABLE IX

DETECTION RESULTS (MAP) OF FASTERRCNN WITH VARYING K AND N
ON FLIR-ALIGNED DATASET

K mAP  mAP50 mAP75 | N mAP mAP50 mAP75
8 394 749 34.7 10 395 751 35.1
16 39.1 757 34.3 25 394 752 34.9
32 40.3 754 35.8 40 403 754 35.8
64 393 742 35.0 55 397 752 35.7
128 39.8 749 34.9 70 39.0 74.0 34.9

visualization results and randomly select four to show here.
As shown in Fig. 5, samples are distributed as day, night,
and ambiguous cases instead of simple day and night two
categories. This shows that the conditional distributions of day,
night, and ambiguous samples are different. Therefore, pre-
dicting the distribution can make the backbone learn specific
visible features, improving performance.

C. Further Studies on FasterRCNN+IDA

To prove the versatility of IDA as a plug-in, in this
subsection, we give more analysis on FasterRCNN, which is
a two-stage model different from YOLOvV3 as a single-stage
model.

1) Ablation Studies: To explore the effectiveness of our
method, we conduct an ablation study on the KAIST dataset.
As shown in Table VII (left), our method reduces the MR by
—2.19% from 21.07% to 18.88%. Only predicting mean vector
or variance vector reduces —1.06% from 21.07% to 20.06%
or —0.21% from 21.07% to 20.86%, respectively. Predicting
both mean and variance vectors improves performance better
because only using mean and variance can accurately describe
the Gaussian distribution. The same applies to FLIR-aligned
dataset. As shown in Table VII (right), with IDA, our method
improves by +1.4% from 38.9% to 40.3%.

2) Length of the Mean and Variance Vectors: On the
KAIST dataset, to explore the effectiveness of the length of
the mean and variance vector, We modify the value of K as
{8, 16, 32, 64, 128} respectively. As shown in Table VIII, the
detector performs best when K = 32. The low value of K
means that the feature losses too much in the process of feature
dimensionality reduction. If the value of K is high, predicting
the mean and variance vectors will be difficult, which leads to
bad performance. The same applies to FLIR-aligned dataset
as shown in Table VIIIL.

3) Size of the Conditional Feature Co-Occurrence Matrices:
On the KAIST dataset, to explore the effectiveness of the size
of the conditional feature co-occurrence matrices, we modify

the value of N by changing {10, 25, 40, 55, 70}. As shown in
Table VIII, the detector performs best when N = 40. The low
value of N leads to the matrices cannot accurately represent
the joint Gaussian distribution, because two values with large
difference maybe be quantized into the same interval. The high
value of N leads to the matrices being sparse. Since the total
samples are a constant number Ny, the number assigned to a
specific row of the matrix will be small. Therefore, frequency
cannot be used to approximate a probability. The same applies
to FLIR-aligned dataset as shown in Table IX.

4) Sensitivity Analysis: We perform analysis on A, and
Ay on the KAIST dataset. (1) We modify the value of A,
by changing {0.05, 0.075, 0.1, 0.125, 0.15} when A, = 0.125.
As shown in the left of Fig.8, the performance is the best
when A,, = 0.1. Our model can keep a relatively stable
result in a wide range of A,. Besides, the low-value A,
means that the detector cannot accurately distinguish day,
night, and ambiguous samples by predicting the mean of
the conditional probability distribution. The high-value A,
leads to bad performance because of insufficient training for
detection Lop. (2) We modify the value of A, by changing
{0.075, 0.1, 0.125,0.15, 0.175} when A, = 0.1. As shown
in the right of Fig.8, the performance is the best when
Ay = 0.125. Our model can keep a relatively stable result
in a wide range of X,. Besides, the low-value A, means
that the detector cannot accurately distinguish day, night,
and ambiguous samples by predicting the variance of the
conditional probability distribution. The high-value A, leads to
bad performance because of insufficient training for detection
Lop. The same applies to FLIR-aligned dataset as shown in
Fig. 9.

D. Noise Impact

This part aims to explore the impact of noise on the feature
co-occurrence matrices. In the FCM module, we add Gaussian
noise on the feature vectors based on Autonomous Vehicles
dataset. The mean of Gaussian noise is zero. The standard
deviation of Gaussian noise is sampled from the set {0.001,
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Fig. 10. Performance impacts on YOLOv3+IDA with different standard
deviation Gaussian noises in Autonomous Vehicles dataset.

0.002, 0.003, 0.004, 0.005}. As shown in Fig.10, the results
are stable with few impacts of noise. This is because feature
values are discretized. Small value changes hardly affect the
discretization results. While for a few changed values, since
there are many samples in the row of the matrices, the
distribution is also stable. Therefore, our method is robust for
a small amount of noise.

E. Generalization Capability

This part aims to explore whether the feature co-occurrence
matrices constructed in a dataset can be used to another
dataset. We use YOLOv3 as the detector. The feature
co-occurrence matrices are calculated in KAIST dataset. The
test dataset is FLIR-aligned dataset. As shown in Table X,
the detector also improves mAP in FLIR-aligned dataset
using co-occurrence matrices from another dataset. This is
because for day, night, and ambiguous samples, the con-
ditional visible features can be obtained although they are
not very correct, which also enhance discriminality for better
performance. This experiment also verifies that the constructed
co-occurrence matrices have a certain degree of generalization
ability. Of course, Table XI also shows using the co-occurrence
matrices from the same dataset is the best. How to transfer the

TABLE X
DETECTION RESULTS (MAP) OF YOLOV3 WITH DIFFERENT FEATURE
C0O-OCCURRENCE MATRICES ON FLIR-ALIGNED DATASET

method mAP mAP50 mAP75
Baseline 354 714 29.9
KAIST — FLIR-aligned 369 75.2 30.1
FLIR-aligned — FLIR-aligned 37.5 75.0 30.3

co-occurrence matrices to a new target dataset is an intereing
problem.

F. Limitations

As described in the algorithm, as many SOTA methods, our
method also needs paired visible-thermal images at training
phase. However, the paired visible-thermal images are hard
to be acquired and aligned. Therefore, developing a method
that uses unpaired visible and thermal images or large models
is an important future research direction. Besides, previous
methods need two backbones for visible and thermal domains
respectively, which lead to more parameters for training. For
simplicity, using a pre-trained large model such as the Segment
Anything Model (SAM) [60] for obtaining visible information
is a promising way.

V. CONCLUSION

We proposed a novel method, dubbed as Illumination
Distribution-Aware adaptation (IDA), which can distinguish
day, night and ambiguous samples without extra illumination
annotations and implicitly extract the compensated visible fea-
tures. Based on this strategy, conditional feature co-occurrence
matrices are proposed, which record the visible feature distri-
bution given a thermal feature. The detector can distinguish
day, night and ambiguous samples by querying and predicting
the conditional distribution. In this way, the extracted features
are also implicitly aligned to the visible features. Experi-
ments confirm the effectiveness of our method. Theoretically,
as feature co-occurrence matrices have some generalization
capability, our method can also be extended to more complex
scenarios, such as the combination of more categories and
different shooting time.
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