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Abstract

Existing unsupervised domain adaptation (UDA) meth-
ods rely on aligning the features from the source and tar-
get domains explicitly or implicitly in a common space (i.e.,
the domain invariant space). Explicit distribution matching
ignores the discriminability of learned features, while the
implicit counterpart such as self-supervised learning suf-
fers from pseudo-label noises. With distribution alignment,
it is challenging to acquire a common space which main-
tains fully the discriminative structure of both domains.
In this work, we propose a novel HomeomorphisM Align-
ment (HMA) approach characterized by aligning the source
and target data in two separate spaces. Specifically, an
invertible neural network based homeomorphism is con-
structed. Distribution matching is then used as a sewing
up tool for connecting this homeomorphism mapping be-
tween the source and target feature spaces. Theoretically,
we show that this mapping can preserve the data topologi-
cal structure (e.g., the cluster/group structure). This prop-
erty allows for more discriminative model adaptation by
leveraging both the original and transformed features of
source data in a supervised manner, and those of target do-
main in an unsupervised manner (e.g., prediction consis-
tency). Extensive experiments demonstrate that our method
can achieve the state-of-the-art results. Code is released at
https://github.com/buerzlh/HMA.

1. Introduction
Deep learning methods rely mostly on a large quantity of

manually labeled data [13, 37, 21, 55] which however could
be prohibitively expensive or impossible to collect in many
scenarios. One effective strategy is to exploit pre-existing
labeled data (i.e., the source domain) for a target domain
without need for manual labeling. Due to the domain shift
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challenge [35], a model pretrained on a source domain often
suffers from drastic performance degradation when directly
applied on a target domain. This gives rise to the research
attention of Unsupervised Domain Adaptation (UDA).

Existing UDA methods can be roughly divided into
two categories. One is based on distribution alignment
[31, 18, 10, 32] which minimizes domain discrepancy by
aligning the distributions between two domains. They usu-
ally align two different distributions to a single distribu-
tion. However, this strategy could distort the original struc-
tural information, potentially hurting the final model gener-
alization [5, 11, 44]. The other category is based on self-
supervised learning [9, 26, 43] which also learns a single
common feature space using pseudo labels or other self-
supervision information. Given inevitable noise with self-
supervision, it is difficult to obtain a common feature space
with discriminative structure well kept. As shown in Fig.
1(a), adapting a model in a common space cannot guaran-
tee better classification performance.

A natural solution for the above problem is to learn a
latent distribution transformation function without destroy-
ing the original distribution of both domains. There are a
few works in this line. For example, CyCADA [14] uses
ordinary bijection implemented by two different networks
to transform the images of the source domain to the target
domain and vice versa. However, its learned two networks
are not strictly inverse mappings, making the transformed
images not necessarily semantically consistent through the
transformation. That is, an image cannot be reconstructed
after going through the two learned mappings. In addition,
CyCADA learns two networks which is expensive.

To address the above limitations, we leverage a stricter
bijection, namely Homeomorphism mapping, a concept
borrowed from the topology field [34]. If a bijection satis-
fies the definition of homeomorphism (i.e., one-to-one cor-
respondence and continuous), theoretically we prove that
the data topological structure can be well preserved in the
projected space (i.e., the samples in the same cluster are still
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Figure 1. Illustration of previous UDA methods and our homeomorphism alignment. (a) Previous methods align the distributions
between two domains in a single common feature space, leading to that per-domain data discriminative structure is not well preserved.
To overcome this problem, (b) our method leverages a homeomorphism mapping as a bridge for alignment across the source and target
feature spaces, since the homeomorphism mapping can preserve the original data topological structure.

in the same projected cluster). By this property, we further
introduce a noise-free self-supervised learning task. With
such a reversible mapping, semantic consistency is guar-
anteed. As shown in Fig.1(b), with our homeomorphism
mapping, the adapted model works better along with both
source and target feature spaces.

Motivated by the above analysis, we propose a novel
unsupervised domain adaptation method, called Home-
omorphisM Alignment (HMA). Our method consists of
three components. The first is to construct a homeomor-
phism mapping for connecting the source and target fea-
ture spaces. We show that an Invertible Neural Network
(INN) [20] can be used to derive a pair of mutually invert-
ible functions (i.e., homeomorphism mapping) through its
forward and invertible processes. The second is sewing up
across the two feature spaces with using distribution match-
ing, as it is required that the cross-space transformed fea-
tures are aligned with the original features. For discrimina-
tive learning, class semantic information is also considered
during homeomorphic mapping. The third is to train the
model in a self-supervised manner with the labels of source
domain and the predictive consistency of unlabeled target
domain as supervision. This is noise-free due to the pre-
served topological structure.

Our contributions are summarized as follows: (1) We
theoretically prove that homeomorphism mapping can guar-
antee the topological structure of the mapped data. This is
an important property yet ignored in the existing researches.
We show that an INN can implement a homeomorphism.
(2) We propose a novel UDA method with homeomor-
phism, the first attempt to consider the UDA problem from
the viewpoint of topology by conducting domain alignment

across two feature spaces. This design differs from the pre-
vious alternative methods typically learning a single com-
mon feature space for domain alignment. (3) Extensive
experiments demonstrate the superiority of our HMA over
prior art alternatives, along with in-depth ablation studies.

2. Related work

Unsupervised Domain Adaptation. UDA aims to improve
the generalization ability of a model on an unlabeled tar-
get domain by leveraging the labeled source domain. Ex-
isting methods can be roughly divided into two categories.
The first category adopts the idea of distribution alignment
that minimizes the source error and the discrepancy be-
tween source and target domains concurrently. There exist
five main strategies: statistic moment matching, adversarial
learning, optimal transport, bi-classifier adversarial learn-
ing and adversarial generation.

Statistic moment matching based methods minimize the
statistic discrepancy to align the distributions between two
domains (e.g., DAN [31], CORAL [42] and CAN [18]).
Adversarial learning based methods are inspired by GAN
[12], which plays a minimax game between feature ex-
tractor and discriminator to learn domain invariant features
(e.g., DANN [10], CDAN [32] and ADDA [46]). Opti-
mal transport based methods generally consist of two steps:
Finding a coupling matrix for connecting each source sam-
ple and target sample, followed by minimizing the cost of
these pair-wise connections (e.g., DeepJDOT [7], RWOT
[50] and ETD [23]). Bi-classifier adversarial learning
based methods play a minimax game with a single fea-
ture extractor and two distinct classifiers during adaptation.



Commonly, they maximize the prediction discrepancy when
training the classifiers and minimize the prediction discrep-
ancy when training the feature extractor (e.g., MCD [39],
SWD [22], BCDM [24] and CDAL [56]). Adversarial gen-
eration methods combine the domain discriminator and a
generator, and generate fake data to align the distributions
across domains at the pixel level (e.g., CoGAN [29], Sim-
GAN [41] and CycleGAN [57]). Overall, the first four
strategies do feature-level distribution alignment while the
last one considers pixel-level alignment. And in this work,
we focus on feature-level distribution alignment.

The second category of UDA methods consider domain
adaptation as a self-supervised learning problem. The key
of this strategy is to obtain accurate pseudo-labels or self-
supervision information. Similarly, such methods also aim
to find a common space to implicitly align the source and
target features so that the source and target domain features
projected by the feature extractor have better discriminabil-
ity. For example, SE [9] uses the mean teacher framework
with a student and a teacher. For the update of the student,
it uses the cross-entropy of source samples and the consis-
tency constraints of target samples. While the teacher is
updated by exponential moving average of the student. AT-
DOC [26] assigns a pseudo-label for each target sample by
employing a memory mechanism or neighborhood aggre-
gation. ssUDA [43] performs self-supervised tasks (e.g.,
rotation, flip and patch location predictions) to improve the
model generalization. SHOT [27] adopts the information
maximization to solve the source-data free UDA problem.
BNM [6] proposes Batch Nuclear-norm Maximization on
the output matrix to improve both discriminability and di-
versity. CDTRANS [51] designs a two-way center-aware
labeling algorithm to produce pseudo labels for target sam-
ples.

Invertible Neural Network (INN) is a flow-based model
that transforms a probability distribution to another by a
sequence of invertible and differentiable mappings. This
model has been applied in a variety of problems. For exam-
ple, HCFlow [28] utilizes the hierarchical conditional flow
as a unified framework for image super-resolution and im-
age rescaling. NCSR [19] proposes noise conditional flow
model for super-resolution for increasing the visual qual-
ity and diversity of images. Derived from general volume
preserving flows, iVPF [54] solve lossless compression by
an exact bijective mapping without any numerical error.
iFlow [53] also solves lossless compression by a modular
scale transform with numerically invertible flow transfor-
mations. DIST [2] a diverse image style transfer frame-
work by enforcing invertible cross-space mapping. Addi-
tionally, invertible networks play an important role in pro-
tecting privacy, such as invertible de-identification and im-
age hiding [1, 17]. To the best of our knowledge, this is first
attempt that leverages INN for unsupervised domain adap-

tion.

3. Analysis of Distribution Alignment
Problem statements. In UDA, we have a source domain
Ds = {(xs

i ,y
s
i )}

ns
i=1 with ns labeled samples and a target

domain Dt = {(xt
i)}

nt
i=1 with nt unlabeled samples. The

two domains share the same label space {1, 2, · · · ,K}, but
in different data distributions. The source model Γs, pre-
trained on labeled source data, is composed of a feature ex-
tractor F and a classifier C. The goal of UDA is to adapt
the source model for the unlabeled target domain.

Ideally, given ground-truth labels, the trained model can
work well in both the source and target domains. To ver-
ify this, we conduct experiments on the Office-31 dataset
[38]. Using ground-truth labels of both source and target
domains, supervised training is applied. It is found that
100% accuracy on both domains can be achieved. Next,
we will investigate the adapted models trained by varying
distribution alignment methods. See Appendix for more al-
gorithm details.
Can previous distribution alignment methods really
achieve 100% accuracy given ground-truth target la-
bels? As mentioned earlier, existing UDA methods usually
adapt the source domain model to the target domain through
two strategies: distribution alignment and self-supervised
learning. Commonly, both tackle domain adaptation by pro-
jecting source and target samples into a common space (i.e.,
a domain invariant space). We conduct an experiment on
the top-4 most challenging tasks from Office-31. We use
the ground-truth target labels for domain alignment. The
results are shown in Table 1. The first row shows the re-
sults of CAN [18] which aligns feature distributions based
on the ground-truth target labels. The second row shows
the results with an adversarial learning method CDAN [32].
The third row gives the performance of an optimal transport
method DeepJDOT [7]. Note, the bi-classifier adversar-
ial learning methods are excluded as they are designed to
use the predictions of the classifiers but not pseudo-labels,
and thus ground-truth labels can not be used. It is ob-
served that these explicit distribution alignment methods
cannot achieve 100% accuracy, meaning that the discrimi-
native data structure is not well preserved during alignment.
The fourth row gives the results of a self-supervised learn-
ing approach using the ground-truth target sample labels. It
works well which means that the feature extractor can find
the domain invariant space while keeping data discrimina-
tive structure. However, in practice the label noise cannot
be eliminated fully.
Can bijection achieve 100% accuracy? It is difficult to
find a feature extractor to obtain a common space while
keeping discriminative data structure. We then investigate
whether source and target samples can be aligned in two
feature spaces in a way of bijection for superior domain



Table 1. Up-bound performance probing: Comparing different
distribution alignment strategies on Office-31 using the ground-
truth target sample labels. SMM: Statistic moment matching; AL:
Adversarial learning; OP: Optimal transport; SL: Self-supervised
learning; BA:Bijection alignment.

Component A→D A→W D→A W→A
SMM 99.9±0.1 99.9±0.0 92.6±0.2 93.8±0.1
AL 99.2±0.1 99.8±0.1 90.9±0.2 92.3±0.1
OP 96.2±0.1 98.8±0.1 89.9±0.2 90.9±0.1
SL 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
BA 97.8±0.2 98.9±0.1 90.7±0.1 93.2±0.2
Ours 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

adaptation. The fifth row in Table 1 shows the performance
of using two different networks to map the source features
to the target feature space and vice versa. In this test, we
use ground-truth target labels to train these two networks
and align the conditional distributions between the trans-
formed features and original features. This bijection made
by the two networks is not a homeomorphism. Thus, the
data topological structure can not be preserved in the pro-
cess of bidirectional projections. It is shown that despite ac-
cess to all ground-truth labels of target domain, this method
still cannot achieve 100% accuracy.
Homeomorphism alignment can achieve 100% accu-
racy. A homeomorphism (also known as a continuous
transformation) is a one-to-one correspondence mapping
between the points in two topological spaces. It is continu-
ous in both directions (refer to [34] for more details). Let
M and N be two topological spaces, and g : M → N be
a bijection. If both the function g and its inverse function
g−1 : N → M are continuous, then g is called a homeo-
morphism. That being said, a homeomorphism is a bijec-
tive correspondence g : M → N such that g(U) is open if
and only if U is open. By the definition above, g is a home-
omorphism if and only if g−1 is a homeomorphism. Based
on this definition, the following theorem can be derived.
Theorem 1. The set boundary corresponds to the
set boundary by homeomorphism. More precisely, let
(M,dM ) and (N, dN ) be two metric spaces where dM and
dN are the metrics on M,N respectively. Suppose there is
a homeomorphism g : M → N , and A is an open subset
in (M,dM ), we have that its image B := g(A) is an open
subset in (N, dN ), and

g(∂A) = ∂B = ∂g(A).

where ∂ means the boundary (see more details in Sec. 6).
As shown in Theorem 1, data topological structure is

preserved by homeomorphism mapping, i.e., the samples
in the same cluster are still in the same projected cluster.
In the literature, we find that there exists a network satisfy-
ing homeomorphism definition – Invertible Neural Network
(INN) [20]. We validate that an INN satisfies the following
theorem.

Theorem 2. Invertible Neural Network is a homeomor-
phism (see more details in Sec. 6).

As shown in the last row of Table 1, we use an INN to
connect two domains at the feature level. With the ground-
truth target sample labels, the homeomorphism alignment
can achieve 100% accuracy thanks to the topological struc-
ture preserving property.

4. Method of Homeomorphism Alignment
Overview: Based on the analysis of distribution alignment,
as shown in Fig. 2, we propose a HomeomorphisM Align-
ment (HMA) method with three components. The first is
homeomorphism mapping construction using an INN for
connecting the source and target feature spaces. The second
is sewing up across the two feature spaces with using distri-
bution matching. The third is training the source model in
the source and target feature spaces with a noise-free self-
supervised task by using the property of homeomorphism.

4.1. Homeomorphism implemented by invertible
neural network (INN)

In each iteration, we randomly sample a batch of source and
target samples. We use ResNet [13] as the feature extractor
F to map a sample x to the feature space: fs/t = F (xs/t)
where s/t represents the source and target domain respec-
tively. Due to the distribution discrepancy between the
source and target domains, we consider that the source and
target features reside on two different spaces (manifolds)
respectively.

A homeomorphism g consists of m blocks of INN. m is
a hyperparameter discussed in Appendix. In each block,
we use an affine network to implement the INN [8], as
shown in Fig. 2. In the forward process, we transform from
the source feature space fs to the target feature space f t.
Specifically, for the i-th block, we denote the input µi

1:2d

with 2d dimension. And we split evenly µi
1:2d to two parts

[µi
1:d, µ

i
d+1:2d], and further transform them with two respec-

tive linear neural networks s(·), t(·). The output of i-th
block µi+1

1:2d is then obtained with residual as follows:

µi+1
1:d = µi

1:d + s(µi
d+1:2d),

µi+1
d+1:2d = µi

d+1:2d + t(µi+1
1:d ).

(1)

The output µi+1
1:2d (a concatenation of µi+1

1:d and µi+1
d+1:2d) will

be set as the input of the next block.
In the inverse projection process, we transform from the

target feature space f t to the source feature space fs. For
the i-th block, we map µi+1

1:2d to µi
1:2d in the opposite away

around. According to Eq.(1), we can get the following equa-
tion:

µi
d+1:2d = µi+1

d+1:2d − t(µi+1
1:d ),

µi
1:d = µi+1

1:d − s(µi
d+1:2d).

(2)
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Figure 2. The framework of the proposed HomeomorphisM Alignment (HMA). (a) We cascade m invertible neural networks to implement
a homeomorphism. (b) The transformed features are sewed up with the corresponding feature spaces by category. (c) The source model is
iteratively trained in the two spaces concurrently.

We similarly split µi+1
1:2d into two parts [µi+1

1:d , µi+1
d+1:2d] and

follow Eq.(2) to get the original input µi
1:2d ((concatenation

of µi
1:d and µi

d+1:2d). Obviously Eqs. (1) and (2) are inverse
functions of each other. We denote the forward process of
the m INNs as the function g, while the inverse process as
g−1. Hence, the function g is a bijection. Since the func-
tions s(·), t(·) are implemented by two linear connected
neural networks, they are continuous; This means both g
and g−1 are continuous, too. According to the definition of
homeomorphism, this INN is a homeomorphism.

4.2. Sewing up

Next we will sew up homeomorphism mapping g to the
source and target feature spaces such that the correspond-
ing classes are aligned. Suppose the transformed feature
fs2t = g(fs) according to the source feature fs and the
transformed feature f t2s = g−1(f t) according to target
feature f t. According to the homeomorphism mapping g,
fs = g−1(fs2t) and f t = g(f t2s). To guarantee that
the transformed features are located discriminatively (i.e.,
aligned with the corresponding classes), distribution match-
ing is used for sewing up. The loss function is defined as
follows,

min
g

LossSew = DM(fs2t,f t) +DM(f t2s,fs), (3)

where DM(·, ·) refer to any existing distribution match-
ing method (e.g., DAN [31], CAN [18], DANN [10],
CDAN [32], DeepJDOT [7] and MCD [39]). Note, in case
of using the adversarial learning method or bi-classifier ad-
versarial learning method, an additional discriminator net-
work or two auxiliary classifiers are needed.

Recall that only marginal distribution matching methods
(e.g., DAN and DANN) cannot achieve satisfactory results,
because they focus on overall distribution alignment instead
of class-wise alignment. Although our homeomorphism
mapping g can ensure that the transformed features preserve
the topological structure, without discriminative sewing up,
it is still hard to achieve lossless transformation across do-
mains. Thus class conditional distribution matching is a bet-
ter choice as validated in ours experiment (Table 2-4).

4.3. Model Training

A model often suffers performance degradation from the
domain shift. To address this problem, we leverage the
homeomorphic property (preserved topological structure) to
perform a noise-free self-supervised training. Specifically,
as proved by Theorem 1, fs has the same structural infor-
mation as fs2t. Concretely, for a specific labeled source
sample x, the corresponding feature fs and fs2t share the
same label. The following loss function is applied to the



supervised training of feature extractor F and classifier C,

LossS = Lce(C(fs),ys) + Lce(C(fs2t),ys), (4)

where ys is the corresponding label of the source sample xs,
and Lce(·, ·) denotes the cross entropy function. In partic-
ular, the term Lce(C(fs),ys) focuses on the classification
of the source domain, whilst Lce(C(fs2t),ys) is concerned
with the classification of the target domain since fs2t and
f t have been aligned.

Considering that our homeomorphism preserves the
structure across the mapping and no label information in the
target domain, unsupervised consistency constraint is a nat-
ural strategy for optimization. Formally, for an unlabeled
target sample xt, we formulate the consistency constraint
on the predictions between f t and f t2s as:

LossT = LC(C(f t), C(f t2s)), (5)

where LC(·, ·) is a consistency constraint such as L1-Norm
and L2-Norm. In practice, we found L2-Norm suffices. By
combining (4) and (5), the overall loss is defined as follows,

min
F,C

LossS + LossT . (6)

Summary. At the training phase, in each iteration, we first
train an INN based homeomorphism mapping, followed by
model training in two spaces concurrently. At the inference
phase, both the target features f t and the transformed tar-
get features f t2s can be used to make the prediction. Also,
average based ensemble can be used to obtain the final pre-
diction.
Remarks. Our model is trained in the source and target fea-
ture spaces concurrently. Compared with the existing align-
ment based UDA methods in a common space, this design
naturally overcomes the intrinsic challenges of projecting
the source and target domain samples into a single shared
feature space using a feature extraction network while keep-
ing their respective discriminative structures. When the dis-
tributions between the two feature spaces are not originally
aligned typical in practice (e.g., due to domain-specific
characteristics such as different background, viewing con-
ditions, etc.), the homeomorphism provides a flexible non-
invasive means for cross-domain relating via transforming
their individual features from each other externally. Criti-
cally, this alignment in two spaces allows to fully keep the
original per-domain characteristics including some discrim-
inative information. Compared with the self-supervised
learning methods suffering the noises of pseudo-labeling,
our transformed source features in the target domain can di-
rectly use the ground-truth source labels, in addition to ad-
ditionally exploiting the topological structure of the source
domain. Further, our consistency constraint can exploit the
unlabeled target training data (i.e., the original and trans-
formed target features with shared topological structure)

in an unsupervised manner, without the notorious pseudo-
label noise issue.

5. Experiments
5.1. Experimental Setup

Datasets: In our experiments, three standard datasets are
used. Office-31 [38] is a popular benchmark. It contains a
total of 4110 images of 31 office environment objects from
3 domains: Amazon (A), Webcam (W), Dslr(D). Office-
Home [47] is a more challenging dataset which contains
15588 images within 65 classes from 4 domains: Artis-
tic images (A), Clip-Art images (C), Product images (P)
and RealWorld images (R). Visda-17 [36] is a widely used
benchmark for domain adaptation with focus on a 12-class
synthesis-to-real object classification task. The source do-
main contains 152,397 synthetic images and the target do-
main has 55,388 real object images.
Implementation details: Our experiment is performed in
Pytorch. Each task is run 5 times to enhance the robust-
ness of the results. The same backbone network is selected
as other compared methods for fair comparison. Specifi-
cally, Resnet-50 is selected as the backbone on Office-31
and Office-Home, and Resnet-101 is selected on Visda-17.
It is worth noting that the output dimension of the classi-
fier in the original backbone is replaced by the number of
categories to fit each task. The SGD optimizer is chosen
to update the network and the CosineAnnealingLR [33] is
used to update the learning rate of the SGD optimizer.
Competitors: For extensive evaluation, we compare our
model with five groups of state-of-the-art methods. The
first is based on distribution alignment, such as statis-
tic moment matching methods DAN [31], CAN [18], and
TSA [25]. The second uses adversarial learning includ-
ing DANN [10], CDAN [32], MDD+IA [16], DADA [45],
CLS [30], ILA [40], MetaAlign [48], DWL [49], and
DALN [3]. The third exploits optimal transport: DeepJ-
DOT [7]. The fourth is based on bi-classifier adversarial
learning, MCD [39]. The fifth adopts self-supervised learn-
ing, including ALDA [4], ATDOC [26], CaCo [15], and
SUDA [52].

5.2. Comparisons to State-of-the-Art

The performance comparison with the state-of-the-art
methods on Office-31, Office-home and Visda-17 are shown
in Table 2, Table 3 and Table 4 respectively. The methods
HMA(DANN) and HMA(CDAN) mean the sewing up by
distribution matching method based on adversarial learn-
ing, with DANN and CDAN focusing on marginal distri-
bution alignment and conditional distribution alignment re-
spectively. HMA(DeepHDOT) integrates the optimal trans-
port method DeepJDOT, and HMA(MCD) the bi-classifier
adversarial learning method MCD, as the sewing up tool.



Table 2. Comparison with the state-of-the-art methods on Office-31 dataset. Metric: classification accuracy (%); Backbone: ResNet-50.
Method Venue A→D A→W D→A D→W W→A W→D avg
ResNet-50 [13] CVPR16 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DAN [31] ICML15 78.6 80.5 63.6 97.1 62.8 99.6 80.4
CAN [18] CVPR19 95.0 94.5 78.0 99.1 77.0 99.8 90.6
TSA [25] CVPR21 92.6 94.8 74.9 99.1 74.4 100.0 89.3
DANN [10] JMLR16 79.7 82.0 68.2 96.9 67.4 99.1 82.2
CDAN [32] NIPS18 89.8 93.1 70.1 98.2 68.0 100.0 86.5
DADA [45] AAAI20 93.9 92.3 74.4 99.2 74.2 100.0 89.0
MDD+IA [16] ICML20 92.1 90.3 75.3 98.7 74.9 99.8 88.8
ILA [40] CVPR21 93.4 95.7 72.1 99.3 75.4 100.0 89.3
MetaAlign [48] CVPR21 94.5 93.0 75.0 98.6 73.6 100.0 89.2
DWL [49] CVPR21 91.2 89.2 73.1 99.2 69.8 100.0 87.1
DALN [3] CVPR22 95.4 95.2 76.4 99.1 76.5 100.0 90.4
DeepJDOT [7] ECCV18 88.2 88.9 72.1 98.5 70.1 99.6 86.2
MCD [39] CVPR18 92.2 88.6 69.5 98.5 69.7 100.0 86.5
ALDA [4] AAAI20 94.0 95.6 72.2 97.7 72.5 100.0 88.7
ATDOC [26] CVPR21 94.4 94.5 75.6 98.9 75.2 99.6 89.7
CaCo [15] CVPR22 91.7 89.7 73.1 98.4 72.8 100.0 87.6
SUDA [52] CVPR22 91.2 90.8 72.2 98.7 71.4 100.0 87.4
HMA(DANN) Ours 83.9±0.1 83.5±0.2 70.5±0.1 98.2±0.1 70.1±0.2 100.0±0.0 84.4
HMA(CDAN) Ours 92.4±0.2 95.1±0.2 73.7±0.1 99.2±0.1 72.8±0.2 100.0±0.0 88.9
HMA(DeepJDOT) Ours 90.9±0.1 91.6±0.2 74.6±0.2 99.0±0.1 73.8±0.1 99.8±0.0 88.3
HMA(MCD) Ours 93.5±0.1 91.3±0.1 73.1±0.1 99.2±0.1 73.5±0.1 100.0±0.0 88.4
HMA(DAN) Ours 85.1±0.2 84.5±0.2 67.9±0.3 98.9±0.2 66.7±0.3 100.0±0.0 83.9
HMA(CAN) Ours 95.8±0.3 95.1±0.1 79.3±0.3 99.3±0.1 77.6±0.2 100.0±0.0 91.2

Table 3. Comparisons with the state-of-the-art methods on Office-Home dataset. Metric: classification accuracy (%); Backbone: ResNet-
50.

Method Venue A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P avg
ResNet-50 [13] CVPR16 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [31] ICML15 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
CAN [18] CVPR19 58.7 78.1 82.1 67.4 75.7 78.1 67.2 54.2 82.5 73.4 60.9 83.5 71.8
TSA [25] CVPR21 53.6 75.1 78.3 64.4 73.7 72.5 62.3 49.4 77.5 72.2 58.8 82.1 68.3
DANN [10] JMLR16 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [32] NIPS18 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
MDD+IA [16] ICML20 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
MetaAlign [48] CVPR21 59.3 76.0 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
DALN [3] CVPR22 57.8 79.9 82.0 66.3 76.2 77.2 66.7 55.5 81.3 73.5 60.4 85.2 71.8
DeepJDOT [7] ECCV18 50.7 68.6 74.4 59.9 65.8 68.1 55.2 46.3 73.8 66.0 54.9 78.3 63.5
MCD [39] CVPR18 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
ALDA AAAI20 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
ATDOC [26] CVPR21 58.3 78.8 82.3 69.4 78.2 78.2 67.1 56.0 82.7 72.0 58.2 85.5 72.2
HMA(DANN) Ours 48.2 65.1 75.4 57.0 65.0 68.3 55.6 45.2 73.5 66.6 54.3 78.4 62.7
HMA(CDAN) Ours 58.7 78.1 81.6 67.4 75.8 78.1 66.8 54.2 82.5 73.4 59.7 83.5 71.7
HMA(DeepJDOT) Ours 57.5 74.7 80.7 66.4 72.1 74.2 61.2 52.8 80.6 72.8 61.7 84.8 70.0
HMA(MCD) Ours 55.5 74.5 81.3 67.6 74.1 75.5 63.6 53.9 82.2 75.3 58.7 82.4 70.4
HMA(DAN) Ours 46.2 63.5 73.9 58.1 65.3 68.3 55.3 43.9 74.8 67.2 53.4 78.4 62.4
HMA(CAN) Ours 60.6 79.1 82.9 68.9 77.5 79.3 69.1 55.9 83.5 74.6 62.3 84.4 73.2

While HMA(DAN) and HMA(CAN) apply the statistic mo-
ment matching methods as the sewing up tool, where DAN
and CAN focus on marginal distribution alignment and con-
ditional distribution alignment respectively.

It can be observed that HMA(CAN) yields the best av-

erage performance on both three datasets. This also con-
firms our previous analysis. Different sewing up methods
will affect the final performance. In general, conditional
distribution alignment is better than marginal distribution
alignment on the two kinds of methods based on adversar-



Table 4. Comparison with the state-of-the-art methods on Visda-17 dataset. Metric: per-class classification accuracy (%); Backbone:
ResNet-101.

Method Venue plane bcycl bus car horse knife mcycl person plant sktbrd train truck avg
ResNet-101 [13] CVPR16 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DAN [31] ICML15 84.8 42.1 75.4 53.0 77.9 62.6 86.6 50.7 59.7 52.9 82.5 26.0 62.9
CAN [18] CVPR19 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
TSA [25] CVPR21 - - - - - - - - - - - - 78.6
DANN [10] JMLR16 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CDAN [32] NIPS18 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
DWL [49] CVPR21 90.7 80.2 86.1 67.6 92.4 81.5 86.8 78.0 90.6 57.1 85.6 28.7 77.1
CLS [30] ICCV21 92.6 84.5 73.7 72.7 88.5 83.3 89.1 77.6 89.5 89.2 85.8 72.7 81.6
DALN [3] CVPR22 - - - - - - - - - - - - 80.6
DeepJDOT [7] ECCV18 85.4 73.4 77.3 87.3 84.1 64.7 91.5 79.3 91.9 44.4 88.5 61.8 77.4
MCD [39] CVPR18 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
ALDA [4] AAAI20 93.8 74.1 82.4 69.4 90.6 87.2 89.0 67.6 93.4 76.1 87.7 22.2 77.8
ATDOC [26] CVPR21 93.7 83.0 76.9 58.7 89.7 95.1 84.4 71.4 89.4 80.0 86.7 55.1 80.3
CaCo [15] CVPR22 90.4 80.7 78.8 57.0 88.9 87.0 81.3 79.4 88.7 88.1 86.8 63.9 80.9
SUDA [52] CVPR22 88.3 79.3 66.2 64.7 87.4 80.1 85.9 78.3 86.3 87.5 78.8 74.5 79.8
HMA(DANN) Ours 86.9 79.1 83.5 50.5 86.7 47.3 86.1 55.1 64.6 59.8 84.6 36.2 68.4
HMA(CDAN) Ours 88.3 71.2 85.1 66.4 86.3 79.3 88.8 87.6 83.9 79.3 83.4 46.2 78.8
HMA(DeepJDOT) Ours 89.3 76.8 80.6 68.3 87.9 75.6 90.6 86.2 89.6 73.5 82.2 49.8 79.2
HMA(MCD) Ours 89.0 72.2 85.5 70.3 90.4 86.6 87.6 83.8 92.2 55.5 89.1 42.1 78.7
HMA(DAN) Ours 87.5 49.2 80.2 53.8 81.8 71.8 87.8 57.6 60.9 57.0 85.3 32.8 67.1
HMA(CAN) Ours 97.6 88.4 84.3 76.0 98.4 97.1 91.3 81.4 97.0 96.7 88.8 60.7 88.1

Table 5. Homeomorphism mapping vs ordinary bijection on
Office-31. OB(CAN) means ordinary bijection sewed by the dis-
tribution matching method CAN.

Component A→D A→W D→A W→A Parameters
HMA(CAN) 95.8±0.3 95.1±0.1 79.3±0.3 77.6±0.2 20992000
OB(CAN) 90.3±0.3 91.7±0.2 76.6±0.1 75.8±0.2 33603584

ial learning strategy and statistic moment matching strategy
because conditional distribution alignment can stitch home-
omorphism mapping with two spaces by category. Further-
more, for condition distribution matching method, statistic
moment matching strategy is better than adversarial learn-
ing strategy. The reason is that statistic moment matching
strategy stitches homeomorphism mapping with two feature
spaces explicitly by category. Interestingly, the alignment
method CAN published in 2019 still achieves SOTA results.
It can be seen that alignment by category is very impor-
tant for extracting domain invariant features. Our method
HMA(CAN) further boosts the CAN performance, because
we realize the difficulty of extracting a domain invariant
space and we do alignment in the two spaces by homeo-
morphism mapping.

5.3. Ablation Analysis and Discussion

Homeomorphism map is better than ordinary bijection.
As mentioned in Section 3, there does not exist many meth-
ods which do alignments in two feature spaces based on bi-

Table 6. Ablation study on Office-31.

Component A→D A→W D→A W→A
CAN 95.0±0.3 94.5±0.3 78.0±0.3 77.0±0.3
INN(CAN) 94.8±0.3 94.1±0.2 77.3±0.4 76.7±0.2
INN(CAN)+S2T 95.6±0.2 94.9±0.3 78.9±0.2 77.4±0.2
HMA(CAN) 95.8±0.3 95.1±0.1 79.3±0.3 77.6±0.2
DAN 78.6±0.2 80.5±0.4 63.6±0.3 62.8±0.2
INN(DAN) 78.3±0.3 79.9±0.2 62.9±0.2 62.6±0.1
INN(DAN)+S2T 84.1±0.2 83.8±0.3 66.5±0.2 66.1±0.2
INN(DAN)+S2T+T2S 85.1±0.2 84.5±0.2 67.9±0.3 66.7±0.3

jection. In this experiment, we will apply the ordinary bijec-
tion method to top-4 challenging tasks on Office-31 dataset,
the difference between homeomorphism implemented by
INN and ordinary bijection is mainly reflected in topolog-
ical structure maintenance. The results are shown in Table
5. It is obvious that homeomorphism mapping is superior
to the ordinary bijection in both accuracy and model param-
eters. For the model size, the INN based homeomorphism
mapping consumes around half of the parameters compared
to using two neural networks.
Ablation study. To show the effectiveness of alignment in
two spaces, we conduct an experiment on top-4 challenging
tasks of Office-31 dataset. The results are shown in Table 6.
The method CAN is considered as the baseline. INN(CAN)
means just sewing up homeomorphism mapping to the two
feature spaces and the source model is retrained based on



the source labels. INN(CAN)+S2T means the transformed
source features are used to learn the model in the target
feature space compared with INN(CAN). HMA(CAN) uses
all features in two spaces. From Table 6, we can find that
simply using INN can achieve similar performance as the
feature distribution alignment method CAN. As shown in
the third row in Table 6, by transferring the source features
to the target feature space, the performance is greatly im-
proved. For this case, the data topological structure and la-
bel information from source domain can be correctly trans-
formed to the target domain, which allows that the learned
model works well in the target domain. The fourth row in
Table 6 shows that the performance can be further improved
if both transformed features are used. Because our home-
omorphism mapping keeps the corresponding relationship
by category, with the help of supervision information in the
source feature spaces, the generalization performance of the
model in the two domains is improved. To further verify our
ideas, we test DAN as a sewing tool, giving the consistent
conclusion.

6. Proof of Theorem
6.1. Proof of Theorem 1

Theorem 1. Let (M,dM ) and (N, dN ) be two metric
spaces with a homeomorphism

g : M → N,

and A is an open subset in (M,dM ), we have that its image
B := g(A) is an open subset in (N, dN ), and

g(∂A) = ∂B = ∂g(A),

where ∂ means the boundary.
Proof. It is sufficient to show that

g(∂A) ⊂ ∂B. (7)

Assume this is true, then we can imply Eq. 7 to g−1, and
obtain

g−1(∂B) ⊂ ∂A.

Hence we have ∂B ⊂ g(∂A). Combing this with Eq. 7, we
have g(∂A) = ∂B.

Now we want to show Eq. 7, that is, for any x ∈ ∂A, we
have g(x) ∈ ∂B. Since x ∈ ∂A, but x /∈ A, then g(x) /∈ B,
and there is a sequence {xi} ⊂ A such that limi→∞ xi = x.
By the continuity of the function g, we have

g(x) = g( lim
i→∞

xi) = lim
i→∞

g(xi).

Noting that g(xi) ∈ B, we get g(x) ∈ ∂B. This completes
the proof. □

6.2. Proof of Theorem 2

Theorem 2. Invertible Neural Network is a homeomor-
phism.
Proof. The definition of homeomorphism is that, a function
g : M → N between two topological spaces is a homeo-
morphism if it has the following properties: (1) g is a bi-
jection; (2) g is continuous; (3) The inverse function g−1 is
continuous.

For any invertible neural network, assuming that its for-
ward process is g, then its invertible process can be repre-
sent as g−1, so g is a bijection. Because the function of each
part of the invertible neural network is continuous, as s(·)
and t(·) in our method, so both g and g−1 are continuous.
To sum up, the invertible network is a homeomorphism. □

7. Conclusion
In this paper, we have proposed a new unsupervised do-

main adaptation method, termed as HomeomorphisM Align-
ment in two spaces (HMA). By analyzing previous align-
ment based methods, we argue that it is difficult to find a
common space or domain invariant space to adapt the pre-
trained source model. So the alignment is performed in
two spaces. The extracted source and target features can
be further transformed respectively by a homeomorphism
mapping so that they can be aligned semantically. Our
method consists of three steps, i.e., constructing an INN
based homeomorphism mapping, sewing up by category
and retraining iteratively training the model in two spaces.
In this way, the source labels can be fully used even in the
target feature space for improving the model generaliza-
tion for the target domain. Extensive experimental results
demonstrate the effectiveness of our method.
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