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Adaptive Mutual Learning for Unsupervised
Domain Adaptation

Lihua Zhou, Siying Xiao, Mao Ye∗, Member, IEEE, Xiatian Zhu∗ and Shuaifeng Li

Abstract—Unsupervised domain adaptation aims to transfer
knowledge from labeled source domain to unlabeled target
domain. The semi-supervised method based on mean-teacher
framework is one of the main stream approaches. By enforcing
consistency constraints, it is hopeful that the teacher network will
distill useful source domain knowledge to the student network.
However, in practice negative transfer often emerges because the
performance of the teacher network is not guaranteed to be al-
ways better than the student network. To address this limitation,
a novel Adaptive Mutual Learning (AML) strategy is proposed
in this paper. Specifically, given a target sample, the network
with worse prediction will be optimized by pushing its prediction
close to the better prediction. This is in the spirit of traditional
knowledge distillation. On the other hand, the network with
better prediction is further refined by requiring its prediction
to stay away from the worse prediction. This can be regarded
conceptually as reverse knowledge distillation. In this way, two
networks learn from each other according to their respective
performance. At inference phase, the averaged output of these
two networks can be taken as the final prediction. Experimental
results demonstrate that our AML achieves competitive results.

Index Terms—Unsupervised Domain Adaptation, Consistency
Constraints, Adaptive Mutual Learning.

I. INTRODUCTION

IN recent years, deep learning has achieved great success
in the field of computer vision [1]–[4], which mainly can

be attributed to a large amount of labeled data. However, in
practical applications, it is complicated to label a large number
of data. Therefore, it has been shown crucial for real world
to train a model using existing labeled data (source domain)
to performs well on unlabeled data (target domain), which
emerges the research of Unsupervised Domain Adaptation
(UDA) [5]–[8].

The existing UDA methods can be roughly divided into
two categories. One is based on distribution alignment, which
realizes knowledge transfer by aligning the distribution be-
tween the source domain and the target domain [9]–[12].
Another is based on semi-supervised learning, which achieves
the generalization of the model by optimizing some auxiliary
tasks [13], [14]. In this line, the mean-teacher based approach
is popular [15]. This kind of approach trains student network
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by supervised learning on source domain and distilling knowl-
edge from the teacher network through consistency constraint
on target domain; while the teacher network is updated by
an Exponential Moving Average (EMA) strategy based on the
parameters of student network [16]–[19].

Although the mean-teacher based approach has achieved
good results, it still has the following two problems in domain
adaptation scenario. First, since the traditional mean teacher-
based method is essentially performing knowledge distillation
in terms of consistency loss, however, due to the existence of
domain shift, there is no guarantee that the teacher network
always performs better than the student network on all target
domain samples, which is proved in our experimental section.
As shown in Fig. 1(a), the correct predicted sample (red
dot) by student network will be misclassified after knowledge
distillation, which makes negative transfer. To solve this prob-
lem, the existing methods [17]usually selects high-confidence
target domain samples predicted by the teacher network to
train the student network, so that the reliability of knowledge
distillation can be ensured. However, it causes low sample
utilization, and even for the selected high-confidence target
samples, student network may still perform better than the
teacher network, such negative transfer still occurs. Second,
the teacher network is updated by the EMA strategy, so the
teacher network is essentially a combination of a series of
student network. As a result, the teacher network and the
student network are highly coupled, rendering the teacher
network gradually helpless for the student network [20].

Based on the above analysis, we proposed an Adaptive
Mutual Learning (AML) method. To solve the first problem,
we design a role selection strategy to dynamically set teacher
network and student network. It judges which network can
perform better for each sample to set the teacher network
and student network, thus avoiding the occurrence of negative
transfer. Specifically, target domain data are divided into two
sets according to whether the prediction of Net 1 is more
discriminative than that of Net 2. For the first set where
Net 1 performs better, Net 1 is set as teacher; while for
another set, Net 2 is set as teacher. Then the prediction of
the student network is asked to be close to the teacher network
as traditional knowledge distillation. For the second problem,
to overcome the problem of high coupling between teacher
network and student network, we propose a reverse knowledge
distillation strategy instead of using the EMA strategy, which
requires the teacher network to stay away from the prediction
of the student network and makes teacher network learn
more discriminative features. Through the backpropagation of
reverse knowledge distillation, instead of the calculation of
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(a) Traditional mean-teacher based method (b) Our method
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Fig. 1. Illustration of (a) the traditional mean-teacher based UDA methods [17] vs. (b) our proposed adaptive mutual learning (AML) method. (a) Traditional
method forces student network close to teacher network, which may cause negative transfer when teacher network predicts wrong. (b) Our AML method
enables two networks to learn from each other’s strengths.

the EMA strategy, the two networks are no longer coupled.
As shown in Fig. 1(b), by using the traditional knowledge
distillation strategy to train the student network and the reverse
knowledge distillation strategy to train the teacher network,
negative transfer is inhibited and hard target samples can be
correctly classified.

Our contributions can be summarized as follows: 1) An
adaptive role selection strategy is proposed to decide which
one is the teacher for different target samples, which makes the
mutual learning possible. 2) We designed a reverse knowledge
distillation strategy. It requires the predictions of teacher
network to be away from the predictions of student network.
In this way, two networks are no longer highly coupled.
3) We proposed an adaptive mutual learning framework for
UDA problem. Our method has achieved competitive results
on three public datasets. The ablation experiment also proves
the reliability of the above two strategies. Compared with the
traditional mean-teacher based approach, an adaptive two-way
knowledge distillation is performed and all target samples are
utilized in domain adaptation.

II. RELATED WORK

Unsupervised Domain adaptation(UDA). Domain adaptation
seeks to transfer information from labeled source domain to
unlabeled o target domain [2], [21]–[24]. The existing UDA
methods can be roughly divided into two categories, one is
based on distribution alignment, and another is based on semi-
supervised learning.

The methods based on distribution alignment explicitly
align the distribution between the source domain and the target
domain to solve the domain shift problem. These methods can
be further divided into the following three groups. The first
group is statistic moment matching, which optimizes the model
by defining a distribution discrepancy between the source
domain and the target domain as a loss function, such as
MMD [11], CORAL [25], CDD [26], etc. The second group
is adversarial learning, which plays a minimax game between
feature extractor and domain discriminator so that feature
extractor can learn domain invariant features. The represented
methods include DANN [9], CDAN [27], ADDA [28], CDGC
[29], ToAlign [30] and so on. CDGC [29] exploits and
aligns both sample- and class-level structure information by
designing a graph-based feature propagation module. ToAlign

[30] decomposes source features into task-related features and
task-irrelevant features to make the domain alignment task
proactively serve the classification task. The third group is
adversarial generation, which generates the fake data and
aligns the distribution at pix-level. The methods with high
attention are CoGAN [10], SimGAN [31], CycleGAN [32]
and PAT [33]. PAT [33] generates adversarial samples from
pairs of samples across the source and target domains and
further exploits these samples to augment training data.

The semi-supervised learning approach improves the gen-
eralization ability of the model by some auxiliary tasks. For
example, CoVi [34] alleviates the inter-domain discrepancy
and intra-domain categorical confusion by consistency train-
ing. ATDOC [35] generates unbiased accurate pseudo labels
for unlabeled target data by memory bank or neighborhood ag-
gregation. CAT [36] achieves the objectives of discriminative
learning and class-conditional alignment via a discriminative
clustering loss and a cluster-based alignment loss. FixBi
[37] constructs intermediate domains by mixup and further
proposes bidirectional matching, self-penalization, and con-
sistency regularization for efficient use of intermediate space.
SRDC [38] proposes a source-regularized, deep discrimina-
tive clustering method to uncover the intrinsic discrimination
among target data. SHOT++ [39] further explores the source-
data absent problem and proposes a new labeling transfer
strategy to splits target samples based on the confidence of
its predictions.

Recently, some methods based on mean-teacher were intro-
duced into domain adaptation. SEDA [17] introduces mean-
teacher framework to domain adaptation, which further ap-
plies class balance strategy and confidence threshold to im-
prove consistency constraint. MTOR [16] proposes consis-
tency constraint on region-level, inter-graph and intra-graph in
the target domain. By employing teacher-student framework,
MLC-Net [18] exploits point-level, instance-level and neural
statistics-level consistency to achieve unsupervised domain
adaptation in 3D detection. A segmentation model has been
proposed which refers itself as a memory module, and min-
imizes the discrepancy of primary classifier and auxiliary
classifier to enhance the prediction consistency [19]. Whilst
achieving good performance, these methods are fundamen-
tally limited to an assumption that a fixed teacher network
always performs better than the fixed student network. On the
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Fig. 2. Overview of the proposed AML (Best viewed in color). The role selection module divides the target domain data into two parts based on the
confidence comparison between the predictions of Net 1 and Net 2, and decides which Net is the Teacher or Student for each part. Then mutual learning
is performed on these two networks. That is, traditional (Ltkd) and reverse (Lrkd) knowledge distillation strategies are conducted to update the Student and
Teacher networks. Cross entropy loss is applied to both networks on source domain data.

contrary, we are convinced that in both networks, the well-
behaved network should be the teacher and it also needs to
be optimized. Therefore, role selection and reverse knowledge
distillation strategies are naturally emerged.
Mean-teacher in UDA. We briefly revisit the processes of
mean-teacher in UDA [17], which has two steps to update the
student network and teacher network respectively.

In the first step, the unlabeled target domain samples are
sent to the teacher network and the student network, and the
labeled source domain samples are only sent to the student
network. Then for the student network, we need to calculate
the supervised loss of the source domain and the consistency
loss of the target domain between two networks, as shown
below:

Lcls(Ds) = Exs
i∈Ds

Lce(ps
i,stu,y

s
i ),

Lcon(Dt) = Ext
i∈Dt

∥pt
i,tea − pt

i,stu∥2,

where Lce(·, ·) means cross entropy, ps
i,stu means the predic-

tion of the i-th source samples of student network, pt
i,stu and

pt
i,tea represent the prediction of the i-th target samples of

student network and teacher network respectively. Therefore,
the student network is updated as follows:

min
θstu

Lcls(Ds) + αLcon(Dt) + βLbal(Dt),

where θstu means the parameters of student network, α and
β are trade-off hyperparameters. Lbal(Dt) is class balance
loss widely used by the mean-teacher method [17]. In this
work, the mutual information objective is applied [40], that is,
Lbal(Dt) = Ext

i∈Dt
En(pt

i,stu) − En(Ext
i∈Dt

pt
i,stu), where

En(·) means entropy.
In the second step, the EMA strategy is applied to update

the parameters of teacher network, which is shown as follows:

θtea = (1− γ)θtea + γθstu,

where θtea means the parameters of teacher network, γ is the
trade-off hyperparameter.

III. METHOD

At UDA problem setting, there is a source domain Ds =
{(xs

i ,y
s
i )}

ns
i=1 consists of ns labeled samples, and a target

domain Dt = {(xt
i)}

nt
i=1 consists of nt unlabeled samples.

These two domains have same label space {1, 2, . . . ,K}, but
their data distributions are different. The goal of UDA is to
train a reliable model for the unlabeled target domain by using
both of the labeled source domain data and unlabeled target
domain data.
Overview. As shown in Fig. 2, the target domain data are sent
into two networks, namely Net 1 and Net 2. To ensure the
reliability of knowledge distillation, for each target domain
sample, we first perform role selection based on the predictions
of these two networks to determine which network acts as
the teacher network and another acts as the student network.
Then traditional knowledge distillation (Ltkd) and reverse
knowledge distillation (Lrkd) are performed between these
two networks. Specifically, the student network is updated
by approaching the predictions of the teacher network, as
traditional knowledge distillation does. While for the teacher
network, its parameters are adjusted by requiring its prediction
away from the prediction of the student network. The teacher
network can produce more discriminative predictions in this
process, which we term reverse knowledge distillation. In
addition, compared with the EMA which is uesd by previous
mean-teacher approaches, the reverse knowledge distillation
will make two networks no longer coupled during teacher
network training. For labeled source domain data, the cross
entropy loss is used to make these two networks fit the
distribution of source domain (Lce).

A. Role selection strategy

As we mentioned before, due to domain shift exists in the
UDA scenario, the traditional knowledge distillation strategy
may result in negative transfer, as the teacher network cannot
always outperform the student network on all target domain
samples. To solve this problem, we propose a role selec-
tion strategy to dynamically set teacher network and student
network for each target domain samples. Specifically, since
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Fig. 3. The relationship between L1
kd and the discrimination ability of Net 1. For any sample xt, the blue dot represents the discrimination of Net 1

is equal to that of Net 2. When the discrimination of the prediction pt
1 of Net 1 is not as good as pt

2, the discrimination of Net 1 can be improved
by requiring the pt

1 to be close to pt
2 through the traditional knowledge distillation strategy. When pt

1 are more discriminative than pt
2, reverse knowledge

distillation can be performed which enables Net 1 to learn more discriminative predictions.

the label information of the target domain is not available,
we approximately estimate which network performs better by
introducing an evaluation criterion, such as entropy [41], KL
divergence [42] and so on, and determine which one is the
teacher network or the student network according to the results
of the evaluation. Recently, the work in [27] found that the
prediction with smaller entropy is more reliable. Therefore, in
this work, the entropy is used as the criterion to determine
which network is regraded as the teacher between Net 1 and
Net 2. So for a target sample, by comparing the entropy of
prediction from Net 1 and Net 2, we choose the smaller
one as the teacher. Suppose the target sample is xt, the entropy
is calculated as En(p) = − 1

K

∑K
k=1 pklogpk, where pk is k-

th component of the prediction p.
Specifically, a batch of data Bt are sampled from target

domain in each iteration. According to our role selection
criterion, the target data is divided into two sets Bt

1 and Bt
2

as follows,

Bt
1 = {xt

i|En(pt
i,1) < En(pt

i,2)},
Bt

2 = {xt
i|En(pt

i,1) > En(pt
i,2)}

(1)

where pt
i,1 = f(xt; θNet1) and pt

i,2 = f(xt; θNet2) are the
preditions of Net 1 and Net 2 for the i-th target sample
xt
i respectively, and f(·) means the forward process of the

network. According to our hypothesis, for the set Bt
1, Net 1

is selected as teacher network while Net 2 is set as student
network; for the set Bt

2, the situation is exactly the opposite.
Remark. To demonstrate effectiveness of role selection

strategy, we further introduce KL divergence as the evaluation
criterion in the experimental section.

B. Mutual knowledge distillation strategy

For Net 1 and Net 2, after the teacher and student roles
are decided, mutual knowledge distillation strategy is em-
ployed. First, to facilitate the student network learning useful
knowledge from the teacher network, the tradition knowledge
distillation technical route is used. On the other hand, the
output of teacher is required to be far away from student,
so that the teacher can be optimized in a more discriminative
direction. Furthermore, compared with the EMA, the reverse
knowledge distillation does not make the two networks highly
coupled.

Specifically, for the Bt
1 data set, Net 1 is set as the teacher

and Net 2 is set as the student. Therefore, we need to distill
the knowledge from Net 1 to Net 2, that is traditional
knowledge distillation. To improve the performance of Net
2, the loss is defined as

min
θNet2

Ltkd(B
t
1) = Ext

i∈Bt
1
∥pt

i,1 − pt
i,2∥2. (2)

At the same time, due to the discrimination of Net 2 is not
as good as that of Net 1, according to the entropy, we pro-
pose a reverse knowledge distillation. By asking the prediction
of Net 1 to be far away from Net 2, the discrimination of
Net 1 can be further improved, which is defined as follows:

min
θNet1

Lrkd(B
t
1) = −Ext

i∈Bt
1
∥pt

i,1 − pt
i,2∥2. (3)

The above loss requires that pti,1 leaves away from pti,2
for the Bt

1. In this way, Net 1 is trained to get more
discriminative output. At the same time, compared with EMA,
which results in the teacher network being a combination of
the parameters of the student network, the reverse knowledge
distillation strategy optimized by gradient descent makes the
two networks no longer highly coupled and maintains their
respective properties.

Similarly, for the Bt
2 data set, Net 1 is the student, whose

loss is defined as the following,

min
θNet1

Ltkd(B
t
2) = Ext

i∈Bt
2
∥pt

i,1 − pt
i,2∥2. (4)

And vise versa for Net 2, the reverse knowledge distilla-
tion is

min
θNet2

Lrkd(B
t
2) = −Ext

i∈Bt
2
∥pt

i,1 − pt
i,2∥2. (5)

All in all, we can combine the above loss functions for Net
1 and Net 2 respectively as follows,

min
θNet1

L1
kd(B

t) = Ltkd(B
t
2) + Lrkd(B

t
1), (6)

min
θNet2

L2
kd(B

t) = Ltkd(B
t
1) + Lrkd(B

t
2). (7)

To further illustrate our mutual learning strategy, we show
this process in Fig. 3, which describes the relationship between
the value of L1

kd and the discrimination ability of Net 1.
For any target domain sample xt, its predictions by Net
1 and Net 2 are pt

1 and pt
2 respectively. As mentioned
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in Section III-A, the prediction entropy is used to measure
the discrimination ability. As shown in Fig. 3, the blue dot
represents a critical point where the two networks possess
the same discriminative ability on xt, that is, En(pt

1) =
En(pt

2), so this sample belongs neither to Bt
1 nor Bt

2. When
En(pt

1) > En(pt
2), it means that this sample xt ∈ Bt

2 and
the discrimination of pt

1 is not as good as pt
2 on this sample,

which is shown as the dotted pink dot in Fig.3. Traditional
knowledge distillation is performed on Net 1 such that the
discrimination ability increases. When En(pt

1) < En(pt
2), it

indicates that this sample xt ∈ Bt
1 and the discrimination of

pt
1 outperforms pt

2, which is shown as the dotted green dot
in Fig.3. Reverse knowledge distillation is performed on Net
1 such that the prediction leaves away from Net 2, which
also increases the discrimination ability of Net 1. Therefore,
regardless of whether the sample xt belongs to Bt

1 or Bt
2, when

the loss L1
kd is minimized to update Net 1, it can make the

pt
1 more discriminative.
Remark. In our mutual learning process, two networks

learn from each other’s strengths to improve their perfor-
mances. Instead of traditional knowledge distillation route, the
role of teacher or student is dynamically changed according
to different target samples and all target samples are useful in
domain adaptation.

C. Overall loss

Training based on source domain data. Similar to the
traditional UDA methods, in each iteration, a batch of source
domain data Bs are sampled. We directly use the cross entropy
loss to train Net 1 and Net 2, so that these two networks
can fit the source domain data, which is defined as follows,

min
θNet j

Lj
cls(B

s) = Exs
i∈BsLce(p

s
i,j ,y

s
i ), (8)

where Lce(·, ·) denotes the cross entropy function, ps
i,j repre-

sents the prediction of the i-th source domain data in the j-th
network for j ∈ {1, 2}.

The mutual information loss in [40] is also applied, which
is commonly used by other mean-teacher based methods to
balance the class distribution in the target domain [17]. That
is,

Lj
bal(B

t) = Ext
i∈BtEn(pt

i,j)− En(Ext
i∈Btpt

i,j), (9)

where pt
i,j represents the prediction of the i-th target domain

data in the j-th network for j ∈ {1, 2}.
Combining the loss functions above, the overall losses of

Net 1 and Net 2 are the following,

min
θnet1

L1
cls(B

s) + αL1
kd(B

t) + βL1
bal(B

t), (10)

and
min
θnet2

L2
cls(B

s) + αL2
kd(B

t) + βL2
bal(B

t), (11)

where α and β are two balance parameters.
Our method is summarized in Algorithm 1. For training

these two networks, the losses in Eq.(10) and Eq.(11) are
repeatedly minimized until convergence. For inference, the
average output of Net 1 and Net 2 is used as the final
prediction.

D. Analysis

In this part, we analyze what happens to the discriminative
ability of the two networks after each optimization in the
traditional mean teacher framework and our method AML.
In order to explain the principle of the proposed method more
easily, we consider a two-class classification task, i.e., the label
space Y = {1, 2}.
Lemma 1. Traditional mean teacher methods can improve
the discriminative ability of one network but inhibit the
discriminative ability of another network after optimiza-
tion.

In the traditional mean-teacher framework, the student net-
work is updated by calculating the gradient of loss, while
the teacher network is derived from the EMA strategy by the
student network. Given a target sample x, the predictions of
the teacher network and the student network can be denoted
as Ptea = [ptea,1,ptea,2] and Pstu = [pstu,1,pstu,2] respec-
tively. Let us assume that the pseudo label ŷ of x is [1,0] i.e.,
of class 1, which has ptea,1 > ptea,2 and pstu,1 > pstu,2.
Without loss of generality, in Case 1, we suppose the teacher
network performs better than the student network, which has
more discriminative prediction, i.e., En(Ptea) < En(Pstu),
which will satisfy the ptea,1 > pstu,1 and ptea,2 < pstu,2.
Then, the consistency loss, which achieves knowledge distil-
lation from teacher network to student network, is used for
target sample x to train the student network, which is shown
as follows:

min
θstu

Lcon = ||Pstu − Ptea||2, (12)

Therefore, the gradient of Pstu is shown as follows:

∂Lcon

∂Pstu
= 2(Pstu − Ptea), (13)

Then the updating formula of Pstu is expressed as follows
according to backpropagation:

P̂stu = Pstu − η
∂Lcon

∂Pstu
= Pstu − 2η(Pstu − Ptea), (14)

where η > 0 represents the learning rate. For Eq.(14), it can
be further written as follows:

p̂stu,1 = pstu,1 + 2η(ptea,1 − pstu,1),
p̂stu,2 = pstu,2 + 2η(ptea,2 − pstu,2).

(15)

Based on our assumptions, which satisfies ptea,1 > pstu,1

and ptea,2 < pstu,2, we can get p̂stu,1 > pstu,1 and
p̂stu,2 < pstu,2 and then En(P̂stu) < En(Pstu), which
means the student network is more reliable and dicriminative
after optimization. On the other hand, the teacher network is
updated by the EMA strategy, written as follows:

θ̂tea = (1− γ)θtea + γθ̂stu, (16)

where θ̂tea/stu means the parameters of teacher or student
network after optimization, γ is the trade-off hyperparameter
using for EMA strategy. Obviously, we have Ptea = f(x; θtea)
and P̂stu = f(x; θ̂stu). So the updated prediction of teacher
network can be written as:

P̂tea = f(x; θ̂tea) ≈ (1− γ)Ptea + γP̂stu

= Ptea + γ(1− 2η)(Pstu − Ptea).
(17)
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If f(·) is a linear function, we can accurately compute the
updated teacher network prediction P̂tea in Eq.(17). However,
in general, f(·) is a nonlinear function, so our analysis here
can only approximate the predictions of the updated teacher
network. Since the learning rate η is usually a very small value,
such as 0.001, we can be sure that (1-2η) is greater than 0. To
further analyze the discriminativeness of the predictions of the
updated teacher network, we further rewrite P̂tea as follows

p̂tea,1 = ptea,1 + γ(1− 2η)(pstu,1 − ptea,1) < ptea,1,
p̂tea,2 = ptea,2 + γ(1− 2η)(pstu,2 − ptea,2) > ptea,2.

(18)
Obviously, the updated teacher prediction P̂tea has a larger
entropy value, which means that the teacher network will
degenerate in this process.

All in all, in Case 1, the student network becomes more
discriminative, while the teacher network suffers performance
degradation.

In Case 2, suppose that the student network performs better
than the teacher network, i.e., En(Ptea) > En(Pstu), which
has the ptea,1 < pstu,1 and ptea,2 > pstu,2. Similarly to
Case1, we can obtain the following equation:

p̂stu,1 = pstu,1 + 2η(ptea,1 − pstu,1) < pstu,1,
p̂stu,2 = pstu,2 + 2η(ptea,2 − pstu,2) > pstu,2.

(19)

So the prediction of student network on this target sample will
get worse. And for the teacher network, we can obtain:

p̂tea,1 = ptea,1 + γ(1− 2η)(pstu,1 − ptea,1) > ptea,1,
p̂tea,2 = ptea,2 + γ(1− 2η)(pstu,2 − ptea,2) < ptea,2.

(20)
In this case, the performance of the student network will
become worse, and the teacher model will become more
accurate to predict the target samples.

In Case 1 and Case 2, we can find that although one of
the teacher network and the student network will improve
discriminative ability, the other network will have performance
degradation after optimization, which is not conducive to our
subsequent operations.
Lemma 2. AML can improve the discriminative ability of
two networks after optimization.

For AML, there are two networks with the same structure,
for simplicity, here we discuss the case where Net 1 performs
better than Net 2, that is, Net 1 is the teacher and Net 2
is the student. The opposite case can be derived in the same
way. In this situation, we have En(PNet1) < En(PNet2),
which makes pNet1,1 > pNet2,1 and pNet1,2 < pNet2,2. For
update network 1, we perform reverse knowledge distillation:

min
θNet1

Lrkd = −∥PNet1 − PNet2∥2. (21)

After calculating the gradient and updating the model, the
result is as follows:

P̂Net1 = PNet1 − η
∂Lrkd

∂PNet1
= PNet1 + 2η(PNet1 − PNet2),

(22)
And it can be further deduced as the following:

p̂Net1,1 = pNet1,1 + 2η(pNet1,1 − pNet2,1) > pNet1,1,

p̂Net1,2 = pNet1,2 + 2η(pNet1,2 − pNet2,2) < pNet1,2.
(23)

Algorithm 1 Our method AML
Input: Source domain Ds = {(xs

i ,y
s
i )}

ns
i=1, target domain

Dt = {(xt
i)}

nt
i=1, the epoch number T , the mini-batch number

M .
Output: An adapted model with two networks.
Procedure:

1: for t = 1:T do
2: for m = 1:M do
3: Sample a batch of data Bs and Bt from the source

domain Ds and the target domain Dt respectively;
4: Forward a mini-batch source domain data Bs and

target domain data Bt through Net 1 and Net 2;
5: Compute cross entropy on Bs according to Eq. (8);
6: Divide Bt into two parts Bt

1 and Bt
2 according to Eq.

(1);
7: Compute mutual knowledge distillation on Bt ac-

cording to Eq. (6) and Eq. (7);
8: Optimize the two networks according to Eq. (10) and

Eq. (11);
9: end for

10: end for
11: return Adapted model.

It can be seen that we have En(P̂Net1) < En(PNet1) after
optimization and the Net 1 will more discriminative.

And traditional knowledge distillation is used to train the
Net 2. From the previous derivation in Case 1, which has a
better teacher network to train the student network, it is easy
to obtain the following formula:

p̂Net2,1 = pNet2,1 + 2η(pNet1,1 − pNet2,1) > pNet2,1,

p̂Net2,2 = pNet2,2 + 2η(pNet1,2 − pNet2,2) < pNet2,2.
(24)

As can be seen from Eq.(24), En(P̂Net2) < En(PNet2), Net
2 is also more discriminative after optimization. And we also
find both Net 1 and Net 2 improve their performance after
optimization.

In conclusion, in the traditional mean-teacher framework,
when one of the teacher and student networks gets better, the
other network is always optimized in a bad direction. However,
in our proposed AML, the two networks continuously improve
the discrimination ability of each other through traditional and
reverse knowledge distillation, so as to gradually carry out
more accurate classification.

IV. EXPERIMENTS

A. Settings

Datasets. There are three standard UDA datasets used in our
experiments. Office-31 [58] is a popular dataset which consists
of 4110 images in 31 classes from 3 domains: Amazon(A),
Webcam(W), Dslr(D). Office-Home [59] is a more challenging
dataset which consists of 15588 images in 65 classes from
4 domains: Artistic images(A), Clipart images(C), Product
images and Realworld images(R). ImageCLEF [60] is a
balanced dataset with 3 domains: Caltech-256(C), ImageNet
ILSVRC2012(I) and PASCALVOC2012(P). Each domain has
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON Office-31 DATASET. METRIC: CLASSIFICATION ACCURACY (%); BACKBONE: RESNET-50.

Method A→D A→W D→A D→W W→A W→D avg
ResNet-50 [1] 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN [9] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
CDAN [27] 92.9 94.1 71.0 98.6 69.3 100.0 87.7
TSA [43] 92.6 94.8 74.9 99.1 74.4 100.0 89.3
ATDOC [35] 95.2 91.6 74.6 99.1 74.7 100.0 89.2
GVB+MetaAlign [44] 94.5 93.0 75.0 98.6 73.6 100.0 89.2
DWL [45] 91.2 89.2 73.1 99.2 69.8 100.0 87.1
SCDA [46] 95.2 94.2 75.7 98.7 76.2 99.8 85.3
SEDA [17] 87.1 90.8 70.7 97.6 72.2 99.8 86.4
SUDA [47] 91.2 90.8 72.2 98.7 71.4 100.0 87.4
CaCo [47] 91.7 89.7 73.1 98.4 72.8 100.0 87.6
DMAL [48] 89.1 88.4 71.8 99.2 70.8 100.0 86.7
AEO [49] 95.1 94.8 73.0 98.9 71.6 100.0 88.9
Our method (AML) 92.4±0.2 94.2±0.3 75.5±0.3 98.9±0.0 75.9±0.0 100.0±0.0 89.5

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON Office-Home DATASET. METRIC: CLASSIFICATION ACCURACY (%); BACKBONE: RESNET-50.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P avg
ResNet-50 [1] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [9] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [27] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
TSA [43] 53.6 75.1 78.3 64.4 73.7 72.5 62.3 49.4 77.5 72.2 58.8 82.1 68.3
ATDOC [35] 54.4 77.6 80.8 66.5 75.6 75.8 65.9 51.9 81.1 72.7 57.0 83.5 70.2
CKB+MMD [50] 54.2 74.1 77.5 64.6 72.2 71.0 64.5 53.4 78.7 72.6 58.4 82.8 68.7
GVB+MetaAlign [44] 59.3 76.0 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
SCDA [46] 57.5 76.9 80.3 65.7 74.9 74.5 65.5 53.6 79.8 74.5 59.6 83.7 70.5
TCM [51] 58.6 74.4 79.6 64.5 74.0 75.1 64.6 56.2 80.9 74.6 60.7 84.7 70.7
SEDA [17] 57.6 76.3 80.4 66.8 75.0 77.0 65.3 54.4 81.1 74.1 60.3 83.4 71.0
DMAL [49] 48.1 70.6 76.6 60.8 67.7 68.8 62.5 51.2 78.1 73.3 54.0 81.0 66.1
AEO [48] 52.2 73.6 76.9 59.7 72.1 73.2 61.3 52.1 78.9 72.4 58.1 82.6 67.8
H-SRDC [52] 50.0 75.3 79.9 63.7 71.9 74.4 62.6 49.6 80.1 71.3 53.6 83.1 68.0
Our method (AML) 58.9 77.2 81.7 69.6 77.9 78.6 66.6 57.9 82.3 74.7 62.5 84.5 72.7

±0.2 ±0.1 ±0.0 ±0.0 ±0.0 ±0.2 ±0.2 ±0.3 ±0.1 ±0.0 ±0.3 ±0.1

600 images collected from 12 categories. Visda-17 [61] is
a widely used benchmark for domain adaptation with focus
on a 12-class synthesis-to-real object classification task. The
source domain contains 152,397 synthetic images and the
target domain has 55,388 real object images. DomainNet [62]
is one of the most challenging datasets in domain adaptation.
It contains about 600 thousand images in 345 categories from
6 domains: Clipart (C), Infograph (I), Painting (P), Quickdraw
(Q), Real (R) and Sketch (S).

Implementation details. Our experiment is performed on
Pytorch platform. To ensure the robustness of the results,
each task is performed five times. For fair comparison, we
use the same backbone with other methods. Specifically,
Resnet-50 is used as the feature extraction network on all
datasets. In addition, Net 1 and Net 2 use the same neural
network structure in our method. For data augmentation, Net
1 uses standard way, which includes Resize, RandomCrop
and Normalize, and Net 2 further adds ColorJitter. For the
hyperparameter α, it sets as 0.01 in both Office-31 dataset,
Office-Home dataset, Visda dataset and Domainnet dataset and
0.1 in imageCLEF dataset. For the hyperparameter β, it sets
as 0.1 in both Office-31 dataset, Office-Home dataset, Visda
dataset and Domainnet dataset and 1.0 imageCLEF. The batch
sizes are set as 32 for source and target domain respectively.
And the learning rate is set as 0.001 and CosineAnnealingLR

[63] is used to update the learning rate during the training.
Competitors. To prove the effectiveness of our method,
we compare our method with the following state-of-
the-art methods: DANN [9], CDAN [27], TSA [43],
ATDOC [35], CKB+MDD [50], GVB+MetaAlign [44],
DWL [45], SCDA [46], TCM [51], MCD [53], SWD [54],
ETD [56], A2LP [55], CGDM [57], SUDA [47], CaCo [47],
DMAL [48], AEO [49] and H-SRDC [52]. In addition, since
our method has a certain relationship with the mean-teacher
based method, SEDA [17] is also introduced as a comparison.

B. Result analysis

Results on Office-31. The performance of AML is shown in
Table I. The overall average performance of our method is
89.5% which is competitive with the state-of-the-art methods.
Our method can achieve 100% accuracy in the task W→D and
most other methods also achieve 100% accuracy in this task.
In the tasks A→W, D→A, D→W, W→A, our method is not
too far behind in comparison with the best results.
Results on Office-Home. The comparison result on Office-
31 dataset between our method and other state-of-the-art
UDA methods is shown in Table II. The overall average
performance of our method is 72.7%. Compared with other
methods, our method obtains the state-of-the-art performance.
From the experimental results, our method achieved the best
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TABLE III
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON ImageCLEF DATASET. METRIC: CLASSIFICATION ACCURACY (%); BACKBONE: RESNET-50.

Method I→P P→I I→C C→I C→P P→C avg
ResNet-50 [1] 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DANN [9] 75.0 86.0 96.2 87.0 74.3 91.5 85.0
CDAN+E [27] 77.7 90.7 97.7 91.3 74.2 94.3 87.7
MCD [53] 77.3 89.2 92.7 88.2 71.0 92.3 85.1
SWD [54] 78.3 90.3 93.2 89.7 73.3 93.8 86.4
A2LP [55] 79.6 92.7 96.7 92.5 78.9 96.0 89.4
DWL [45] 82.3 94.8 98.1 92.8 77.9 97.2 90.5
ETD [56] 81.0 91.7 97.9 93.3 79.5 95.0 89.7
CGDM [57] 78.7 93.3 97.5 92.7 79.2 95.7 89.5
CKB+MMD [50] 80.7 92.2 96.5 92.2 79.9 96.7 89.7
DMAL [48] 80.3 93.2 96.5 90.5 76.3 96.0 88.8
AEO [49] 79.9 92.6 98.6 93.2 77.5 96.5 89.7
H-SRDC [52] 79.0 92.3 97.0 92.6 77.0 94.7 88.8
Our method (AML) 80.8±0.3 93.8±0.1 97.7±0.1 93.2±0.2 80.2±0.3 98.2 ±0.1 90.7

TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON Visda-17 DATASET. METRIC: PER-CLASS CLASSIFICATION ACCURACY (%); BACKBONE:

RESNET-101.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck avg
ResNet-101 [1] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [9] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CDAN [27] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
DWL [45] 90.7 80.2 86.1 67.6 92.4 81.5 86.8 78.0 90.6 57.1 85.6 28.7 77.1
TSA [43] - - - - - - - - - - - - 78.6
ATDOC [43] 93.7 83.0 76.9 58.7 89.7 95.1 84.4 71.4 89.4 80.0 86.7 55.1 80.3
SEDA [17] 95.9 87.4 85.2 58.6 96.2 95.7 90.6 80.0 94.8 90.8 88.4 47.9 84.3
SUDA [47] 88.3 79.3 66.2 64.7 87.4 80.1 85.9 78.3 86.3 87.5 78.8 74.5 79.8
CaCo [47] 90.4 80.7 78.8 57.0 88.9 87.0 81.3 79.4 88.7 88.1 86.8 63.9 80.9
DMAL [48] - - - - - - - - - - - - 77.6
Our method (AML) 96.7 88.5 79.6 69.0 95.9 96.3 87.3 83.3 94.4 92.9 87.0 58.7 85.8

TABLE V
COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON DomainNet DATASET. METRIC: CLASSIFICATION ACCURACY (%); BACKBONE: RESNET-50.

ResNet clp inf pnt qdr rel skt Avg. MCD clp inf pnt qdr rel skt Avg. BNM clp inf pnt qdr rel skt Avg.
clp - 14.2 29.6 9.5 43.8 34.3 26.3 clp - 15.4 25.5 3.3 44.6 31.2 24.0 clp - 12.1 33.1 6.2 50.8 40.2 28.5
inf 21.8 - 23.2 2.3 40.6 20.8 21.7 inf 24.1 - 24.0 1.6 35.2 19.7 20.9 inf 26.6 - 28.5 2.4 38.5 18.1 22.8
pnt 24.1 15.0 - 4.6 45.0 29.0 23.5 pnt 31.1 14.8 - 1.7 48.1 22.8 23.7 pnt 39.9 12.2 - 3.4 54.5 36.2 29.2
qdr 12.2 1.5 4.9 - 5.6 5.7 6.0 qdr 8.5 2.1 4.6 - 7.9 7.1 6.0 qdr 17.8 1.0 3.6 - 9.2 8.3 8.0
rel 32.1 17.0 36.7 3.6 - 26.2 23.1 rel 39.4 17.8 41.2 1.5 - 25.2 25.0 rel 48.6 13.2 49.7 3.6 - 33.9 29.8
skt 30.4 11.3 27.8 3.4 32.9 - 21.2 skt 37.3 12.6 27.2 4.1 34.5 - 23.1 skt 54.9 12.8 42.3 5.4 51.3 - 33.3

Avg. 24.1 11.8 24.4 4.7 33.6 23.2 20.3 Avg. 28.1 12.5 24.5 2.4 34.1 21.2 20.5 Avg. 37.6 10.3 31.4 4.2 40.9 27.3 25.3
SWD clp inf pnt qdr rel skt Avg. CGDM clp inf pnt qdr rel skt Avg. AML clp inf pnt qdr rel skt Avg.

clp - 14.7 31.9 10.1 45.3 36.5 27.7 clp - 16.9 35.3 10.8 53.5 36.9 30.7 clp - 18.1 38.2 9.4 53.1 41.9 32.1
inf 22.9 - 24.2 2.5 33.2 21.3 20.0 inf 27.8 - 28.2 4.4 48.2 22.5 26.2 inf 30.7 - 32.0 5.7 50.0 26.7 30.0
pnt 33.6 15.3 - 4.4 46.1 30.7 26.0 pnt 37.7 14.5 - 4.6 59.4 33.5 30.0 pnt 38.4 15.7 - 5.9 56.1 33.7 30.0
qdr 15.5 2.2 6.4 - 11.1 10.2 9.1 qdr 14.9 1.5 6.2 - 10.9 10.2 8.7 qdr 19.1 3.6 7.8 - 10.0 11.9 10.5
rel 41.2 18.1 44.2 4.6 - 31.6 27.9 rel 49.4 20.8 47.2 4.8 - 38.2 32.0 rel 54.2 22.1 50.2 7.1 - 41.7 35.1
skt 44.2 15.2 37.3 10.3 44.7 - 30.3 skt 50.1 16.5 43.7 11.1 55.6 - 35.4 skt 52.1 16.7 42.9 13.2 56.9 - 36.4

Avg. 31.5 13.1 28.8 6.4 36.1 26.1 23.6 Avg. 36.0 14.0 32.1 7.1 45.5 28.3 27.2 Avg. 38.9 15.2 34.2 8.3 45.2 31.2 28.8

performance on 9 tasks out of 12 tasks. In the remaining three
tasks A→C, R→P and A→P, our method achieves second
performance, which only lags behind by 0.4% and 0.7%
compared to GVB+MetaAlign [44] and by 0.4% compared
to ATDOC [35].
Results on ImageCLEF. The results of our method AML
and other state-of-the-art methods are reported in Table III.
Our method achieves the highest accuracy in 3 out of 6 tasks
and overall performance. Compared with CKB+MMD [50],
AML leads the overall performance by 1.0%, especially on
task P→C, which performance are improved by 1.5%. On

tasks I→P, task I→C and task C→I, our method only lags
behind the optimal performance by 0.2%, 0.2% and 0.1%,
respectively.
Results on Visda. The comparison result on Visda dataset
between our method AML and other state-of-the-art UDA
methods is shown in Table IV, and the per-class classification
accuracy is reported. From the result, AML achieves the best
performance on plane, bcycl, car, knife, person and sktbrd
classes in the compared methods. For other classes, AML
also yields good results and not far behind the best compared
methods. Compared with SEDA, our method improves the
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Fig. 4. In the training progress, the percentage of target domain samples that are misclassified by the teacher network but correctly classified by the student
network.

TABLE VI
ABLATION STUDY ON Office-31 DATASET.

Method A→D A→W D→A D→W W→A W→D
SEDA 87.1 90.8 70.7 97.6 72.2 99.8
SEDA+rev 89.8 91.8 72.9 98.6 75.0 99.8
AML 92.4 94.2 75.5 98.9 75.9 100.0

overall performance by 1.5%.
Results on DomainNet. The comparison result on DomainNet
dataset between our method AML and other state-of-the-art
UDA methods is shown in Table V, and the classification
accuracy is reported. For each cross-domain pair, the source
domains are specified in the corresponding row fields and
the target domains are specified in the corresponding column
fields. In this dataset, our method also yields the best perfor-
mance in the compared methods, which improves performance
by 1.6% compared with the CGDM and 3.5% compared with
BNM.

From Table I to Table V, we can summarize the fol-
lowing three observations. First, compared with the baseline
ResNet [1], which trains a model in the source domain and
applies it directly to the target domain, all UDA methods can
greatly improve performance. It proves that domain adaptation
can help the model generalize to the target domain. Second,
compared with SEDA [17], our method can significantly
improve the performance, which proves that the adaptive
role selection of teacher and student and reverse knowledge
distillation strategies works. Finally, our method has improved
performance on both datasets, especially on the office-home
dataset, which reflects the effectiveness of our method to a
certain extent.

C. Model analysis

Ablation study. In this work, our core contribution is to
propose a role selection strategy and a reverse knowledge
distillation strategy. Therefore, in this experiment, we mainly
verify these two points instead of studying the role of each
loss function like the previous work. The ablation study is
conducted on Office-31 dataset which is shown in Table VI.
SEDA [17] means the basic mean-teacher based method,

TABLE VII
COMPARISON OF ROLE SELECTION STRATEGY USING DIFFERENT

EVALUATION CRITERION.

Method A→D A→W D→A D→W W→A W→D
AML(EN) 92.4 94.2 75.5 98.9 75.9 100.0
AML(KL) 92.6 93.9 75.8 99.0 75.5 100.0
AML(ROM) 87.8 86.2 70.7 96.6 67.5 99.2

TABLE VIII
COMPARISON OF EACH NETWORK ON DIFFERENT DATASETS.

Acc(%) Office-home Office-31 Image-CLEF Visda Domainnet
Net1 72.5 89.3 90.2 81.2 28.3
Net2 72.4 89.2 90.1 80.9 28.1
AML 72.7 89.5 90.7 81.8 28.8

which is used as a baseline. SEDA+rev represents the orig-
inal mean-teacher framework adding the reverse knowledge
distillation strategy. For the update of the student network,
it is based on the consistency constraints like the traditional
mean-teacher method, whereas for the update of the teacher
network, it uses reverse knowledge distillation to require
its predictions away from the student network. Comparing
SEDA+rev with SEDA, we can find that reverse knowledge
distillation strategy can indeed improve performance. AML is
our complete algorithm, which further adds the role selection
strategy based on SEDA+rev. From the experimental results,
the effectiveness of role selection strategy is also verified.
Misclassified sample statistics and the effectiveness of
role selection. In this part, we aim to verify the hypothesis
that the teacher network not always outperforms the student
network on all target domain samples due to the domain shift,
and further verify the effectiveness of role selection strategy.
The SEDA+rev and the AML are performed, the difference
between them is whether or not a role selection strategy is
used. Specifically, we count the percentage of target domain
samples that incorrectly predicted by the teacher network
but correctly predicted by the student network. Considering
whether the discrepancy of domain shift is severe, we perform
two tasks of Office-31, A→D and D→A, respectively. As
shown in Fig. 4, the red line reprents the result of SEDA+rev
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(a) SEDA: teacher                                 (b) SEDA+rev: teacher                                  (c) AML: Net1

(d) SEDA: student                                 (e) SEDA+rev: student                                  (f) AML: Net2

Fig. 5. Visualization with t-SNE for different methods. Left: SEDA. Center: SEDA + Reverse Knowledge Distillation. Right: AML. The results are on
Office-31 task D→A.

TABLE IX
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON Office-Home DATASET FOR PARTIAL-SET UDA (PDA) SETTING. METRIC: CLASSIFICATION

ACCURACY (%); BACKBONE: RESNET-50.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P avg
ResNet-50 [1] 43.5 67.8 78.9 57.5 56.2 62.2 58.1 40.7 74.9 68.1 46.1 76.3 60.9
Pseudo-labeling 51.9 70.7 77.5 61.7 62.4 67.8 62.9 54.1 73.8 70.4 56.7 75.0 65.4
MinEnt [64] 45.7 73.3 81.6 64.6 66.2 73.0 66.0 52.4 78.7 74.8 56.7 80.8 67.8
MCC [65] 54.1 75.3 79.5 63.9 66.3 71.8 63.3 55.1 78.0 70.4 55.7 76.7 67.5
BNM [66] 54.6 77.2 81.1 64.9 67.9 72.8 62.6 55.7 79.4 70.5 54.7 77.6 68.2
ATDOC [35] 59.5 80.3 83.8 71.8 71.6 79.7 70.6 59.4 82.2 78.4 61.1 81.5 73.3
ETN [67] 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.5
SAFN [68] 58.9 76.3 81.4 70.4 73.0 77.8 72.4 55.3 80.4 75.8 60.4 79.9 71.8
RTNet [69] 63.2 80.1 80.7 66.7 69.3 77.2 71.6 53.9 84.6 77.4 57.9 85.5 72.3
Our method (AML) 60.9 77.7 84.5 73.1 71.3 81.4 74.0 62.3 84.2 77.8 60.3 81.2 74.1

and the blue line reprents the result of AML.
From the results, we can get following conclusion: First,

teacher network do not necessarily perform better than student
network, especially when the domain discrepancy is large.
Second, regardless of whether the domain discrepancy is huge,
the method using the role selection strategy can minimize
the number of samples that the teacher network predicts
incorrectly but the student network predicts correctly. Third,
the method using the role selection strategy can converge the
model faster.
Role selection strategy based on KL divergence. To further
analyze role selection strategy, we introduce KL divergence
as an evaluation criterion for experiments. Specifically, before
the start of each epoch, we average the features extracted
by the two networks, and then calculate the source cluster
center for each category of source domain. After that, K-

means clustering algorithm [70] is performed on the target
domain features to obtain the pseudo-label {yt

i}
nt
i=1 of each

target domain sample, where the cluster centers of the source
domain are used as the initial cluster centers of K-means
clustering algorithm. Finally, in each training process, we
calculate the KL divergence between the predictions of the two
networks and the pseudo-label, and divide the target domain
by comparing the KL divergence, which is as follows:

Bt
1 = {xt

i|KL(pt
i,1,y

t
i) < KL(pt

i,2,y
t
i)},

Bt
2 = {xt

i|KL(pt
i,1,y

t
i) > KL(pt

i,2,y
t
i)},

where KL(A,B) means the KL divergence between A and
B. Then subsequent operations proceed as mentioned in our
method section. The experimental results are shown in Table
VII, where AML(EN) uses entropy as the evaluation criterion
and AML(KL) uses the KL divergence as the evaluation
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Fig. 6. (a) Parameter sensitivity analysis of AML on Office-Home dataset task A→C. (b) Convergence curves of AML on Office-31 dataset.

criterion. From the experimental results, the results of different
evaluation criteria do not vary greatly. So in this work, the
entropy is used as the evaluation criteria, which is relatively
simple. In addition, we further evaluated the performance of
our method when setting the teacher-student network ran-
domly, which is shown in AML(ROM).
Visual analysis. To give an intuitive understanding of our
method, the target features learned by both networks of
transfer task D→A on Office-31 dataset are visualized by t-
SNE [71] in Fig.5. Fig.5(a) shows the visualization of the
features learned by the teacher network in the mean-teacher
based framework [17]; Fig.5(d) represents the visualization of
the features learned by the student network in the mean-teacher
based framework. Fig.5(b) and Fig.5(e) are the visualizations
of the features learned by the teacher network and the stu-
dent network respectively, which is added with the reverse
knowledge distillation strategy. Fig.5(c) and Fig.5(f) are the
results of feature visualization of Net 1 and Net 2 in our
algorithm, respectively.

From the results, there are two observations. First, the
comparison between Fig.5(a) and Fig.5(d) and the comparison
between Fig.5(b) and Fig.5(e) cannot show that the teacher
network is definitely better than the student network. Second,
from left to right, the features in Fig.5 are more and more
compact, which proves the effectiveness of role selection
strategy and mutual learning strategy.
Parameter analysis. We perform sensitivity analysis on two
hyperparameters α and β in our algorithm. The task A→C on
Office-Home dataset is performed and the result is shown in
Fig. 6(a). The α is ranged from 0.001 to 1 when β is fixed
as 0.1, which is shown in orange line. And β is ranged from
0.001 to 1 when α is fixed as 0.01, which is shown in blue
line. From the experimental results, the performance of the
model will increase first and then decrease with the increase
of α and β. The range of model performance changes is not
large, which prove that our model is robust respect to these
two parameters.
Convergence analysis. The accuracy curves of target samples
on Office-31 dataset during training process are depicted in
Fig. 6(b). It shows that as the number of epochs increases, the

accuracy is improved and finally reaches a plateau, demon-
strating that the training process is smooth and convergent.
Results of Net 1 and Net 2. In this task, we present the
overall performance of Net 1 and Net 2 on each dataset.
We also list the performance of AML, which is the ensemble
of the two networks, as shown in the Table VIII. From this
table we can see that the result of AML can achieve better
performance compared to a single network. And our single-
network is also competitive compared to existing alternatives.
Results of Partial-set UDA. In this experiments, we adopt
the standard partial-set UDA setting as [67] on office-home
dataset, where target domain is consists of data from the
first 25 categories, and the result is shown in Table IX.
Compared with other methods, AML still still produces a
competitive result, which also proves that our method can be
easily transferred to other scenarios.

V. CONCLUSION

Traditional mean-teacher based UDA methods always distill
knowledge from the teacher to the student. The roles of teacher
and student are fixed and not all target samples are used in
domain adaptation. Due to existence of domain shift, this one-
way knowledge distillation will bring negative transfer. In this
paper, we proposed a novel adaptive mutual learning method
to address these limitations. For different target samples, the
role of teacher or student is adaptively selected based on the
entropy of network predictions. Then traditional knowledge
distillation can be employed from teacher network to student
network; and reverse knowledge distillation is proposed to
further render teacher network more discriminative. The ex-
perimental results on the public datasets validate the efficacy
of our method.
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