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Our Contributions

= Proposed Bayesian Detector Combination (BDC), a model
-agnostic framework to simultaneously infer:
1. the annotation quality of each annotator,
2. the consensus bounding boxes,
3. and soft labels
from noisy crowdsourced object annotations without any
additional inputs.

" Introduced a benchmark to systematically evaluate BDC and
previous methods using synthetic datasets with crowdsourced
annotations simulating varying crowdsourcing scenarios.

= Demonstrated superior performance, scalability and robustness of
BDC with extensive experiments.

Noisy crowdsourced object annotations

= Often difficult and expensive to obtain accurate annotations.

= High disagreements observed in complex domains due to high
Interobserver variability; challenging to achieve consensus.
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Noisy annotations in MSCOCO

This can result in multiple noisy, inconsistent object annotations origi-
nating from multiple annotators per image.

Disagreements in VinDr-CXR

Limitations of existing solutions
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Matching annotations to model predictions

Optimal prediction for each annotation is found by minimising:

A\

y:@ — arg H}Hl 'Cmatch(gna ym) 9
Yn€yY R R
£match(:&n7 ym) — _ﬁn(cm) =+ )\1£]0U(bna bm) =+ )\2| ‘bn — bm‘ ‘1 .
= One-to-many matching
* Local minimum matching cost

Modelling annotators’ annotations as distributions

Algorithmic limitations:

= Majority voting: Assumes equal annotator annotation accuracy;
= Crowd R-CNN [1]: Not generalisable to other object detectors;
= WBF-EARL [2]: Requires annotators' proficiency levels.

Evaluation limitation: Prior works used private synthetic crowd-
sourced datasets constructed under different setups; cannot com-
pare their results directly.

Bounding Box Aggregator

= Scaling and translation errors of each annotator modelled using
Gaussian distributions with Gaussian-Gamma conjugate prior:
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= Annotations are corrected with the posterior mean:
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= All annotations matched to the same prediction are aggregated
using the posterior precision as weight.

Class Label Aggregator
" Integrated Bayesian classifier combination neural network [3].

= Modelled the annotated class labels of each annotator as
multinomial distributions conditioning on the true object label:
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= Have a Dirichlet conjugate prior.
* The aggregated class label probability is computed as:
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Experiments and Results

= Real-world dataset: VinDr-CXR: thoracic abnormalities annotated

by 17 expert radlologlsts
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= Synthetic datasets: simulate various synthetic crowdsourcing
settings with VOC and MSCOCO datasets.

Test AP+ Test AP~
Method YOLOv7 FRCNN Eva  Method YOLOV7 | FRCNN | EVA
NA 174 172 78 NA 534 = 397 718
MV 13.9 163 82 MV 619 = 556 748
Crowd R-CNN [1] : 167 - Crowd R-CNN [1] : 485 @ -
WBE-EARL [2] 164 170 84  WBF-EARL[2] 556 = 51.9 747
BDC (ours) 192 179 89  BDC (ours) 650  56.6 78.0

Table: AP metrics for (left) VinDr-CXR and (right) COCO-FULL synthetic datasets
with 10 synthetic annotators of varying annotating accuracies.

= BDC scales well with the number of annotators and is robust to the
percentage of noisy annotators with poor reliability.
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