

Our Contributions

- Proposed Bayesian Detector Combination (BDC), a model -agnostic framework to simultaneously infer:
 - 1. the annotation quality of each annotator,
 - 2. the consensus bounding boxes,
 - 3. and soft labels

from noisy crowdsourced object annotations without any additional inputs.

- Introduced a benchmark to systematically evaluate BDC and previous methods using synthetic datasets with crowdsourced annotations simulating varying crowdsourcing scenarios.
- Demonstrated superior performance, scalability and robustness of BDC with extensive experiments.

Noisy crowdsourced object annotations

- Often difficult and expensive to obtain accurate annotations.
- High disagreements observed in complex domains due to high interobserver variability; challenging to achieve consensus.

Noisy annotations in MSCOCO Disagreements in VinDr-CXR This can result in *multiple noisy*, *inconsistent object annotations* originating from multiple annotators per image.

Limitations of existing solutions

Algorithmic limitations:

- Majority voting: Assumes equal annotator annotation accuracy;
- Crowd R-CNN [1]: Not generalisable to other object detectors;
- WBF-EARL [2]: Requires annotators' proficiency levels.

Evaluation limitation: Prior works used private synthetic crowdsourced datasets constructed under different setups; cannot compare their results directly.

Bayesian Detector Combination for Object Detection with Crowdsourced Annotations

Zhi Qin Tan, Olga Isupova, Gustavo Carneiro, Xiatian Zhu, and Yunpeng Li

Matching annotations to model predictions

Optimal prediction for each annotation is found by minimising: $\hat{y}_m^* = \arg\min_{\hat{y}_n \in \hat{y}} \mathcal{L}_{match}(\hat{y}_n, y_m) ,$

- One-to-many matching
- Local minimum matching cost

Modelling annotators' annotations as distributions

Bounding Box Aggregator

Scaling and translation errors of each annotator modelled using **Gaussian** distributions with **Gaussian-Gamma** conjugate prior:

 $p(\epsilon_m | k_m = k, \mu, \sigma) = \mathcal{N}(\mu^k, \sigma^k)$.

 $\epsilon_m = \left| \hat{b}^*_{m(1)} - b_{m(1)}, \ \hat{b}^*_{m(2)} - b_{m(2)}, \ \hat{b}^*_{m(2)} - b_{$

• Annotations are corrected with the posterior mean:

$$b_m := (b_m + [\mu_{(1)}^k, \, \mu_{(2)}^k, \, 0, \, 0]$$

• All annotations matched to the same prediction are aggregated using the posterior precision as weight.

Class Label Aggregator

- Integrated Bayesian classifier combination neural network [3].
- Modelled the annotated class labels of each annotator as *multinomial distributions* conditioning on the true object label:

$$p(c_m|k_m = k, t_m = j)$$

- Have a Dirichlet conjugate prior.
- The aggregated class label probability is computed as:

 $\rho_{n,j} = \exp\left[\ln \hat{p}_{n,j} + \right]$

 $\mathcal{L}_{match}(\hat{y}_n, y_m) = -\hat{p}_{n(c_m)} + \lambda_1 \mathcal{L}_{IoU}(\hat{b}_n, b_m) + \lambda_2 ||\hat{b}_n - b_m||_1 .$

$$\hat{b}_{m(3)}^* \div b_{m(3)}, \ \hat{b}_{m(4)}^* \div b_{m(4)} \end{bmatrix}$$
.

 $)\odot\left[1,\,1,\,\mu_{(3)}^k,\,\mu_{(4)}^k
ight]$.

$(j,\pi) = \pi_{j,c_m}^k$.

$$\sum_{k \in \tilde{\kappa}_n} \mathbb{E}_{\pi_j^k} \ln \pi_{j,c}^k \right)$$

Experiments and Results

by 17 expert radiologists.

Lung Opacity	
Atelectasis on	Atelectasison
Pulmonary fibrosis	Pulmonary fibrosi
Pleural thickening	
(a) NA	(b) MV

settings with VOC and MSCOCO datasets.

Method	Test AP ^{.4}			Mathad	Test AP ^{.5}		
	YOLOv7	FRCNN	EVA	Method	YOLOv7	FRCNN	EVA
NA	17.4	17.2	7.8	NA	53.4	39.7	71.8
MV	13.9	16.3	8.2	MV	61.9	55.6	74.8
Crowd R-CNN [1]	-	16.7	-	Crowd R-CNN [1]	-	48.5	-
WBF-EARL [2]	16.4	17.0	8.4	WBF-EARL [2]	55.6	51.9	74.7
BDC (ours)	19.2	17.9	8.9	BDC (ours)	65.0	56.6	78.0

Table: AP metrics for (left) VinDr-CXR and (right) COCO-FULL synthetic datasets with 10 synthetic annotators of varying annotating accuracies.

- Access, 11, 2023.

Real-world dataset: VinDr-CXR: thoracic abnormalities annotated

(d) Crowd R-CNN

(e) BDC (ours)

Synthetic datasets: simulate various synthetic crowdsourcing

BDC scales well with the number of annotators and is robust to the percentage of noisy annotators with poor reliability.

[1] Hu and Meina. Crowd R-CNN: An object detection model utilizing crowdsourced labels. In ICVISP, 2020. [2] Le et al. Learning from multiple expert annotators for enhancing anomaly detection in medical image analysis. *IEEE*

[3] Isupova et al. BCCNet: Bayesian classifier combination neural network. In NeurIPS ML4D, 2018.